Teaching Statement: Raghav Malik

Philosophy

Having thoughtfully designed classes with careful scaffolding, opportunities for engagement, and many
avenues of success is vital to getting the next generation of students excited about computer science and
training them to become CS researchers. So, my role as an educator is not only to teach students computer
science, but to teach them how to learn computer science. My priorities in the classroom are focused around this
goal: knowing an answer matters less than knowing how to get to the answer; a deep understanding of
the boundaries of current knowledge is a crucial prerequisite to doing original research that pushes these
boundaries; and not every attempt at solving a problem will be successful, but effort should be rewarded.

These priorities are reflected in my approach to lesson design. I start by getting students familiar with
the material at a basic level, usually by giving a lecture. Of course, merely listening to a lecture is not
sufficient for getting a truly deep understanding of the material, so I like to augment my lectures with
guided exploration in the form of activities. By giving students specific prompts to think about, I encourage
them to deeply explore the material on their own and ensure that they retain a better understanding than
they would from just staring at my slides. Finally, I firmly believe that learning should not occur only
within the walls of the classroom: when designing lectures and activities, I try to also give students the
tools for engaging with course material even after class, e.g., in the form of problem sets that encourage
further exploration.

Experience

I have had many opportunities throughout my time at Purdue to engage with this teaching philosophy.
When I was a teaching assistant for our Discrete Mathematics course in Spring 2023, I wrote a small proof
assistant for verifying Gentzen-style propositional- and predicate-logic proofs, and I got to see firsthand
the positive impact this had on students’ learning. Encouraged by the near-immediate feedback they could
now get for their homework proofs, some students began exploring more “creative” methods of proving
the same statements. They found that, for example, in the absence of a constructive logic, one could “de-
rive” the modus ponens rule using disjunctive syllogisms and the definition of implication. Anecdotally, the
students who were experimenting with the proof assistant tended to demonstrate a better grasp of propo-
sitional and predicate logic, e.g. in office hours.

My duties teaching assistant duties expanded significantly in Fall 2024, when I started TA’ing for Object
Oriented Programming in C++. Over the course of the next few semesters, I got to put my lecturing theories
to the test as I designed and delivered several lectures on my own. Fortunately for me, for the first few
lectures that I gave, the class (or at least the subset of the class that regularly attended lectures) was relatively
small, so I was able to make my lectures highly interactive. I would lecture for a slide or two about a topic—
for instance, “mutable” vs. “const” references—then pause to ask a few questions to facilitate a discussion
(“How would the semantics of this program change if I passed by const or mutable reference instead of
by value?”), encouraging students to talk about their responses with each other as well before continuing.
Several students later confessed to me how much more engaging they found this form of lecture. Although
these interactive lectures did not scale well to the larger class sizes in later semesters, we were able to replace
the interactive portions with extra credit “activities”, and found that students who regularly completed the
activities consistently performed much better on exams.

Finally, in the Summer of 2024, I was given sole-instructorship over a Data Structures and Algorithms
course and given free reign to simulate my teaching philosophy on a much larger scale. Since the course
was taught virtually and the students were in different time zones, I decided to implement “attendance
polls” in lieu of a proper attendance policy. After most lectures, I would post an open-ended question
(“What is your favorite application of a topological sort?”, “Why would you use Bellman-Ford instead of
Dijkstra’s algorithm?”, etc.) and allow students to submit responses for 24 hours. These were meant to
encourage actually engaging with the class material; a certain threshold of responses was required to pass
and credit was awarded on the basis of effort rather than correctness. Although I was unable to provide
individual feedback on every response to every poll, I would still read most of the responses to get a sense
of what material students were still struggling with; I would then make sure to reinforce this in the next
lecture before moving on.

Teaching Statement: Raghav Malik - 1



The course was project-based, and while I inherited some programming assignments that had been
given in past semesters, I decided to overhaul them to make them more open-ended as well. For example,
one of the projects covered spatial indexing techniques. Rather than requiring them to implement, e.g., a k-d
tree, the project description simply asked them to write an application that could efficiently find collisions
between large sets of points. The students were then free to choose the data structure that they felt best
fit the problem. Although many students did, in fact, end up just implementing k-d trees, there were still
many more “creative” solutions. One student cleverly combined k-d trees and quadtrees to write a program
that, while painful to debug, technically worked and certainly demonstrated a strong grasp of the material.
Several others who had not yet internalized the difference between k-d trees and binary trees wrote code
that always split their tree along the same axis; while this was a technique I had cautioned against in class,
trying it for themselves definitely helped them better understand why long- and narrow-space partitions
are nonideal.

When designing bi-weekly problem sets for the course, I sometimes included multipart problems that
would incrementally build up to discussing something not covered in class. For example, one problem
might start by asking students to analyze some simple hashing algorithms, then apply one of the hash-
ing algorithms to a string-matching problem, and eventually “reinvent” the Rabin-Karp algorithm from
first principles. Structuring the problem this way allowed me to reinforce course material (e.g., hashing
algorithms) by requiring students to think creatively about applying the algorithms they learned about in
class rather than rote-memorizing some formulas. It also provided a starting point for students who were
interested in exploring a topic further than what we could cover in class.

Courses

At the undergraduate level, I can teach courses on data structures and algorithms, discrete mathematics,
and programming languages and compilers. At the graduate level, I can also teach courses on program-
ming languages and compilers, and cryptography. Additionally, I am interested in developing a course that
surveys some more advanced compilation techniques, with a focus on building domain-specific compilers.

Teaching Statement: Raghav Malik - 2



