
Research Statement: Raghav Malik
In a world increasingly concerned about data privacy, the availability of privacy-preserving computation
is more important than ever. Whether it is to protect intellectual property, as in the case of secure machine
learning, or to comply with governmental data privacy regulations like HIPAA or GDPR, we often need to
write applications that can perform computations without learning anything about their inputs. A popular
approach to writing privacy-preserving software is Multiparty computation, or MPC. Multiparty compu-
tation (MPC) refers to a class of cryptographic protocols that allow mutually distrusting parties to jointly
compute functions over private inputs, without the need to share their inputs with each other. While these
protocols are in theory powerful enough to evaluate any (bounded, terminating) function, in practice, ac-
tually writing programs that use MPC has a number of drawbacks. The cryptographic overhead is often
so high that nontrivial MPC programs can be prohibitively expensive to evaluate. Furthermore, the MPC
programming model can be highly counterintuitive, making it very difficult for non-experts to write effi-
cient MPC programs. My research aims to make it easier for non-experts to write privacy-preserving software by
building compilers for MPC.

Compilers naturally suggest themselves as solutions to the drawbacks of MPC, promising to obviate the
need for a deep understanding of the cryptosystem by automatically generating efficient MPC code from
high level programs. Unfortunately, most modern MPC compilers take essentially the same approach that
compilers did in the 80s, mechanically translating insecure operations into their MPC equivalents, and do-
ing very little optimization on top of this. Of course, traditional compilers have come a long way since then,
and optimizations like smart instruction selection and vectorization are now considered standard practice.
However, transferring these techniques into the MPC space can be nontrivial. Vectorizing compilers, for
example, typically target vector instruction sets in CPUs, and therefore bake in certain assumptions about
the cost model of these instructions. A naïve attempt at applying traditional (SLP-style) vectorization to
MPC fails for this exact reason: while some MPC schemes do support a limited form of vectorization called
ciphertext-packing, their programming model is vastly different from that of CPU vector architectures, and
the lack of an easy vector selection/permutation instruction means that SLP-vectorized code can easily per-
form worse than its scalar counterpart. The takeaway, then, is that just as a good compiler engineer needs
to have a deep understanding of the architecture being targeted, writing an MPC compiler requires a deep
understanding of the semantics and cost model of the target MPC scheme!

Research Approach

My research focuses on bringing this expertise to the world of MPC compilers, and using it to build compil-
ers that are MPC-aware; that is, they can leverage knowledge about the target scheme to perform interesting
and useful optimizations beyond simply translating programs into MPC operations. A good example of
my applying this approach is Coyote [Malik et al., 2023], a compiler I developed for applying SLP-style
vectorization to programs that target BFV, a particular implementation of an MPC scheme called Fully
Homomorphic Encryption (FHE). In Coyote, I note how important the trade-off between vector scheduling
and data layout is in the context of MPC vectorizers: a too-aggressive vector schedule can result in data lay-
outs that require prohibitively expensive operations to move inputs to the correct lane. Unlike traditional
SLP vectorizers, Coyote runs the searches for a schedule and data layout together rather than separately,
and uses results from one search to guide the other, thus ensuring that the final generated schedule can
be vectorized without incurring prohibitively expensive data movement operations. It first constrains the
data layout by choosing a set of operations to force onto the same lane, and then uses a constrained form
of SLP to find a vector schedule that satisfies the layout constraints. Finally, it uses the vector schedule to
provide feedback about which operations to group together, and repeats the cycle. I show that Coyote can
effectively vectorize arbitrary code while avoiding too much data-movement overhead, thus enabling it
to outperform traditional SLP-style approaches. Additionally, I demonstrate that Coyote’s techniques can
often generate schedules that match the best expert-written implementations for some kernels.

1



Compiler-Cryptosystem Codesign

By not treating hardware as a fixed constant, compiler researchers can often go further than just optimizing
programs for target architectures, and instead do hardware-software codesign. Similarly, instead of thinking
of an MPC protocol as a fixed architecture to target, we can push further into compiler-cryptosystem codesign,
in which we tweak the protocol itself to provide better abstractions for our compilers to target. My ongoing
work on COATL demonstrates how powerful this approach can be. COATL is a compiler that targets
another FHE scheme called CGGI. The usual programming model for CGGI exposes a number of “boolean
gates” that can be evaluated securely; thus, most compilers that target CGGI essentially work by compiling
programs into boolean circuits. In COATL, however, I notice that the boolean gates provided by the scheme
are a mere abstraction over the actual operations implemented in the protocol: the ability to take linear
combinations of ciphertexts, and the ability to securely index into lookup tables. I use these operations to
develop the arithmetic lookup table, a new CGGI abstraction that strictly generalizes the old boolean gates.
I then show that a compiler that targets these arithmetic lookup tables can produce circuits that are much
smaller and more efficient than their boolean circuit counterparts.

Other FHE Compilers

Other work I have done in this space includes COPSE [Malik et al., 2021], a compiler for vectorizing decision
tree inference, and COIL, an ongoing project that proposes a novel IR for representing FHE programs that
contain branching control flow.

COPSE Running inference on decision trees is a challenging problem to solve in FHE: The usual (plain-
text) inference algorithm involves traversing the tree by evaluating the condition at the root and then using
that to decide which subtree to recurse on, but these control-flow dependences cannot be directly encoded
in the FHE programming model without leaking information about the condition via the subtree that was
chosen. Prior work solves this problem by transforming the tree into a polynomial that encodes the control-
flow as data flow by evaluating every possible branch; however, the resulting polynomial is often too large
and unwieldy to efficiently evaluate, and the complicated data dependences make it difficult to vectorize.
In COPSE, I recognize that the unique semantics of FHE mean that every condition needs to be evaluated,
allowing us to break the data dependences while preserving the semantics of the program. I develop a de-
cision tree representation that encodes both the branching structure and the actual conditions as a series of
matrices by breaking data dependences, and show how easily vectorizable matrix operations can be used
to perform inference over this new representation. In the evaluation, I demonstrate how using the correct
(“FHE-aware”) set of abstractions for the problem can accelerate inference by up to an order of magnitude.

COIL In COIL, I further tackle the problem of compiling secure control flow. The usual strategy that FHE
compilers use for dealing with branching control flow is to generate code that “multiplexes” by executing
all branches and then using the branching condition to select between the possible results. I argue that the
multiplexing strategy can give up a lot of optimization opportunities, since a multiplexed result inherently
“forgets” which branch it came from. I propose the idea of path forests, a novel IR which keeps track of
this information, allowing the compiler to perform a number of interesting peephole optimizations like
path-dependant constant propagation, as well as more aggressive dead code elimination by identifying
and pruning correlated branches. I also draw a connection between the path forest IR and the vectorizable
representation developed in COPSE, and demonstrate how the COIL strategy can be adapted to effectively
vectorize these branching programs.

I show that the optimizations enabled by the path forest IR can speed up generated code by several
orders of magnitude, and find that COIL can automatically discover expert-designed implementations of
several common kernels.

2



Future Research

While my work represents an important step forward in the world of MPC compilation, it still barely
scratches the surface of what is possible. My vision for this space is to build MPC compilers that codify and
automatically apply the decades of folklore tricks that MPC experts have used for manually writing efficient
MPC programs. I plan to realize this vision by (1) Finding ways to generalize these tricks into principled
techniques that MPC compilers can implement, as I did in Coyote and COIL, and (2) Developing novel
abstractions at both the compiler and protocol level to make MPC programs easier to optimize, as I did in
COPSE and COATL.

Short Term

There is a lot of low-hanging fruit in the space of FHE optimizations that I want to address in the short-term.

Coyote While Coyote’s unique co-optimization strategy produces promising results, the expensive syn-
thesis procedure means that it can fail to synthesize schedules for larger kernels. I want to investigate ways
to augment Coyote’s synthesis procedure with structural information about the program its vectorizing to
shrink the search space and enable vectorizing much larger kernels. In particular, I note that many common
kernels come equipped with natural “splitting points”. I expect that a vectorization strategy that can break
these kernels into smaller subprograms, vectorize each subprogram independently, and then intelligently
recombine the schedules, can scale up to effectively vectorizing much larger kernels.

COIL Although the path-forest IR I proposed in COIL enables some very powerful optimizations in the
presence of branching control flow, it is not well suited to representing programs where the branches are
more naturally encoded as data flow branches (i.e. “muxes”). I want to develop extensions to the path
forest IR that allow it to encode these programs as well, and extend the COIL compiler to automatically get
“best of both worlds”, using the path forest IR where it makes sense, and falling back to a more traditional
IR when there aren’t as many path-dependent optimizations available.

Scheme Switching Boura et al. [2018] and jie Lu et al. [2020] both propose techniques for switching ci-
phertexts between FHE schemes that offer different trade-offs. I want to investigate techniques for statically
partitioning programs so that different subcomputations can run in different schemes.

Medium Term

In the more medium-term, I want to explore ways to generalize the techniques I have developed to ap-
ply to a broader class of MPC protocols, instead of being tailored for a specific scheme. For example,
programmable bootstrapping, a feature which enables performing interesting computations during com-
mon ciphertext maintanence operations (“bootstrapping”), is currently largely unique to the programming
model of the CGGI scheme (in particular, this programmability is what COATL exploits). However, recent
work such as Kim et al. [2024] shows how to enchance bootstrap operations in other schemes like BFV. How
can we generalize the CGGI programming model to allow for “hiding” more interesting computation in,
e.g., BFV bootstrapping? Going beyond that, while most of my results so far are specific to particular FHE
schemes, what would it take to extend these results to other MPC protocols? Better yet, can we fit these
techniques into a more general (i.e., protocol-agnostic) framework for analyzing and optimizing MPC pro-
grams, and use this to automatically extract more protocol-specific optimizations? In HACCLE, we took
some first steps in realizing this vision by building a staging compiler that enables both protocol-agnostic
optimizations, and optimizations that can only be done once a protocol is chosen. While HACCLE estab-
lished a framework for doing this kind of compilation, it did so in the naïve style discussed earlier. Bringing
MPC-aware compilation techniques to a framework like HACCLE would be a great launching pad for new
projects.

3



References

C. Boura, N. Gama, M. Georgieva, and D. Jetchev. CHIMERA: Combining ring-LWE-based fully ho-
momorphic encryption schemes. Cryptology ePrint Archive, Paper 2018/758, 2018. URL https:
//eprint.iacr.org/2018/758.

W. jie Lu, Z. Huang, C. Hong, Y. Ma, and H. Qu. PEGASUS: Bridging polynomial and non-polynomial
evaluations in homomorphic encryption. Cryptology ePrint Archive, Paper 2020/1606, 2020. URL
https://eprint.iacr.org/2020/1606.

J. Kim, J. Seo, and Y. Song. Simpler and faster BFV bootstrapping for arbitrary plaintext modulus from
CKKS. Cryptology ePrint Archive, Paper 2024/109, 2024. URL https://eprint.iacr.org/2024/
109.

R. Malik, V. Singhal, B. Gottfried, and M. Kulkarni. Vectorized secure evaluation of decision forests. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Imple-
mentation, PLDI 2021, page 1049–1063, New York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450383912. doi: 10.1145/3453483.3454094. URL https://doi.org/10.1145/3453483.
3454094.

R. Malik, K. Sheth, and M. Kulkarni. Coyote: A compiler for vectorizing encrypted arithmetic circuits.
In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, ASPLOS 2023, page 118–133, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 9781450399180. doi: 10.1145/3582016.3582057. URL https://doi.org/
10.1145/3582016.3582057.

4

https://eprint.iacr.org/2018/758
https://eprint.iacr.org/2018/758
https://eprint.iacr.org/2020/1606
https://eprint.iacr.org/2024/109
https://eprint.iacr.org/2024/109
https://doi.org/10.1145/3453483.3454094
https://doi.org/10.1145/3453483.3454094
https://doi.org/10.1145/3582016.3582057
https://doi.org/10.1145/3582016.3582057

