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Fully Homomorphic Encryption (FHE) enables evaluating computations over ciphertexts without revealing
the encrypted data. A key challenge when compiling for FHE is dealing with control flow: the usual semantics
require the party evaluating the program to learn something about each branch, which violates the basic
premise of secure computations. Standard “multiplexer”-based compilers solve this problem by generating
programs that require the evaluator to execute every possible path, obviating the need to know which path is
correct. Thus, they provide oblivious semantics at the cost of producing unwieldy circuits that are difficult to
effectively optimize.

We present COIL, an FHE compiler that addresses the control flow challenge by restructuring how control
flow in circuits is interpreted, replacing the use of multiplexers with path forests, and enabling a series of
path-dependent optimizations that result in more efficient realizations of complex branching kernels. We
demonstrate on a variety of benchmarks that COIL outperforms other state-of-the-art FHE compilation
techniques, often by more than an order of magnitude.

1 INTRODUCTION
Fully Homomorphic Encryption (FHE) is a cryptographic technique that allows an evaluator
to perform a computation on ciphertexts without learning about its inputs. This enables secure
multiparty computation, in which two or more mutually distrustful parties collaborate to evaluate a
function over their private inputs.

While FHE represents a promising solution to problems like secure machine learning and com-
putation offloading, the overhead of encrypted computation is incredibly high, with FHE programs
being orders of magnitude more expensive than their non-homomorphic counterparts. Further-
more, the nonintuitive cost models and limited set of operations supported by most homomorphic
schemes make FHE programming both tedious and error-prone. Much of the work in this space
therefore focuses on developing compilers to alleviate some of the burden.

1.1 Oblivious Control Flow
One of the key challenges that FHE programmers have to deal with, and the one with which we are
most concerned, is the problem of control flow, and in particular, secure conditionals in which the
condition depends on an encrypted value. The standard control flow semantics would require the
evaluator to learn the condition in order to choose the appropriate branch to take. However, FHE
semantics prohibit the evaluator from learning the values of any ciphertext. Instead, FHE compilers
will often transform a program so that the evaluator computes every possible result, and then uses
the encrypted condition variables and a network of secure multiplexers (“muxes”) to obliviously
select the correct result at the end (see Section 2.1) [18, 19].
This paper describes an alternative to the “muxing” strategy: we introduce an intermediate

representation (IR) called path forests (Section 4). The path forest IR annotates each possible control
flow path through the program with the conditions necessary to witness that path. In other words,
the path forest IR keeps track of conditions throughout the program instead of only using them at
the end of divergent control flow like in a mux network. This distinction, while minor, is crucial, as
it enables path-dependent optimizations such as pruning (removing code for computations that
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cannot happen) and specialization (instantiating ciphertexts whose values are constrained along
each path)1.

For example, consider the following code snippet which takes two ciphertext inputs, 𝑥 and 𝑦:

if (x - 1 < y) {

z = 1;

} else {

z = 2;

}

if (x < y + 1) {

w = z + 3;

} else {

w = z - 3;

}

Naïvely transforming this into a mux network yields2:

z = mux(x - 1 < y, 1, 2);

w = mux(x < y + 1, z + 3, z - 3)

In contrast, the path forest encoding of the above snippet looks3 like:

[x - 1 < y] [x < y + 1] z = 1; w = z + 3;

[x - 1 < y] [x ≥ y + 1] z = 1; w = z - 3;

[x - 1 ≥ y] [x < y + 1] z = 2; w = z + 3;

[x - 1 ≥ y] [x ≥ y + 1] z = 2; w = z - 3;

Notice that in the latter encoding, the middle two paths can immediately be identified as un-
reachable (because of the mutually exclusive conditions), and pruned from the forest. Furthermore,
while the mux network requires the operations 𝑧 + 3 and 𝑧 − 3 to be done securely since 𝑧 is a
ciphertext, the path forest allows them to be specialized to plaintext values and done in the clear
since the value of 𝑧 is known along each path. Note that specializing to plaintext does not leak any
information to the evaluator, as every path is still evaluated. After applying these two optimizations,
the path forest becomes:

[x - 1 < y] [x < y + 1] z = 1; w = 4;

[x - 1 ≥ y] [x ≥ y + 1] z = 2; w = -1;

This can now be converted back into a mux network for evaluation:

⟨z, w⟩ = mux(x - 1 < y, ⟨1, 4⟩, ⟨2, -1⟩)

However, the path forest encoding enables much more efficient execution strategies. In particular,
we show how a path forest can be regarded as a decision tree, allowing us to use efficient private
decision tree inference techniques [2, 27]. Moreover, the path forest splits the computation into
conditions and a set of condition-free subcomputations, allowing the latter to be further optimized
through classical techniques such as vectorization [12, 26, 33].

1Pruning and specialization can be thought of as versions of dead code elimination and constant propagation that take into
account path-dependent information.
2The remainder of this paper adopts the convention of underlining ciphertext values in all code snippets.
3For ease of presentation, the path forests in the examples are written differently from the formal grammar defined in
Figure 5
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1.2 Contributions
The specific contributions we make in this paper are:

(1) An IR for FHE programs with branching control flow called path forests.
(2) A series of optimizations enabled by the path forest IR, including specialization and pruning.
(3) Our COIL compiler that uses path forests to optimize branching FHE programs.
We use COIL to compile a set of benchmarks with secure control flow. We demonstrate that COIL

greatly outperforms the naïve mux network strategy, often automatically discovering hand-coded
optimal implementations of certain operations.

2 FULLY HOMOMORPHIC ENCRYPTION
Fully Homomorphic Encryption refers to a class of encryption schemes that allow for homomorphic
computation over ciphertexts; e.g., the sum or product of the encryptions of two integers is the
encryption of their sum or product. FHE is a useful cryptographic tool for carrying out privacy-
preserving or oblivious computation (evaluating programs where the inputs are unknown to the
evaluator).

A common use-case for FHE is computation offloading, which uses a single public/private keypair
and only involves two parties4. The client encrypts their inputs to a program with their private
key and sends the ciphertexts to the evaluator. The evaluator uses the public key to evaluate the
program via a sequence of homomorphic operations before sending the result ciphertext back to
the client, who finally decrypts it and learns the output of the program.

2.1 Oblivious Semantics for Computation
The standard security guarantee for oblivious computation is noninterference: an evaluator without
the private key cannot distinguish two traces of a program that differ only in encrypted variables.
This poses a problem for programs with branching: in knowing which branch to take, the evaluator
must learn something about any ciphertext that influences that branch, breaking noninterference.
To preserve noninterference we want programs to exhibit oblivious control-flow semantics, in which
the evaluator can correctly execute a branching program without knowing anything about which
branches were taken.
A common way to provide such semantics is via secure multiplexers (“muxes”), cryptographic

operations that use a ciphertext selector to obliviously choose between multiple inputs, returning
the input corresponding to the value of the selector5. When the evaluator encounters a branch,
it executes both paths, and then uses the branching condition and a mux to select the correct
value when control flow converges. This obviates the need to reveal anything about the branching
condition to the evaluator, and still ensures that the correct return value is produced. Note that this
technique can in the worst case have an exponential effect on the total computation time: every
path through the program has to be evaluated, even if the result of only one is used.
The use of muxes can be extended to other kinds of secure control flow such as loops: given a

plaintext upper bound on the number of iterations, a loop can be fully unrolled into a series of
branches that check the exit condition for each iteration, which can be obliviously evaluated as
above.
Armed with these constructions, we can build a compiler that achieves oblivious semantics

[18, 19]: functions are inlined, loops are fully unrolled, and all the resulting branches are converted

4Some authors have proposed multiparty multi-key extensions to FHE [5, 10, 25]. While we do not directly make use of
these, the ideas in this paper are relatively straightforward to extend to a multikey setting.
5An example of a mux in an FHE scheme that provides homomorphic addition and multiplication is b𝑋 + (1 − b)𝑌 , where b
is the (ciphertext) selector bit, and 𝑋 and 𝑌 are the two inputs being selected between.
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Fig. 1. COIL pipeline

to muxes as described above, resulting in an arithmetic or boolean circuit, which can be evaluated
in any FHE scheme that supports all the operations used.

2.2 Ciphertext Batching
Even without considering the computation-expanding effect of oblivious branching, a major draw-
back of using FHE is the high overhead of encrypted computation. State-of-the-art implementations
of homomorphic operations are often still several orders of magnitude more expensive than their
plaintext counterparts. One way to mitigate this overhead is via ciphertext batching, an optimization
that certain (RLWE-based6) FHE schemes provide [8, 31]. Ciphertext batching allows encrypting
a vector of integers into a single ciphertext in such a way that homomorphic operations occur
element-wise on the underlying vector (i.e. SIMD-style).
Ciphertext batching can alleviate the FHE overhead by vectorizing computations and reducing

the total number of homomorphic operations the evaluator has to perform. For example, a sequence
of 𝑁 independent multiplies can be replaced by a single vector multiply by packing all the left
and right operands into ciphertext vectors. These vector semantics have their own limitations that
make vectorizing general FHE applications difficult [12, 26, 33].

2.3 Noise Management
Much of the security of FHE schemes comes from a small amount of noise added to each ciphertext
upon encryption. A freshly encrypted ciphertext starts with a certain noise budget. When the
noise level exceeds this budget, it interferes with the encrypted value, causing decryption to fail.
Homomorphic operations—in particular, multiplication—accumulate noise; hence, the noise budget
roughly corresponds to the maximum depth of circuit that can be evaluated. The noise budget can
be increased by encrypting into larger ciphertexts, which are in turn much slower to compute over.

Alternatively, some schemes support a technique called bootstrapping [16, 17] which “refreshes”
the noise budget by homomorphically evaluating the decryption function. Unfortunately, bootstrap-
ping is incredibly slow, and also carries some limitations governing when it can be used. Managing
the total depth is, therefore, crucial to designing efficient FHE applications. In Section 6.3, we
demonstrate how the path forest strategy can reduce the multiplicative depth of a circuit.

3 COIL OVERVIEW
Our goal is a compiler for FHE programs that contain oblivious control flow. Naïvely compiling

control flow into muxes (Section 2.1) often yields poor results: it can obscure opportunities for
path-dependent optimization, and can produce expensive circuits that do not to scale. This section
outlines an alternative compilation technique for such programs based on path forests. A path
forest is a representation of all possible control flow paths through a program, where each path is
annotated with a sequence of conditions that must be true along it.

6RLWE stands for Ring Learning with Errors, a number-theoretic problem that involves distinguishing two distributions of
polynomials. The security of FHE schemes such as BFV and BGV (the one used in this paper) is based on the hardness of
RLWE.
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let index = \(haystack , needle, cur) => {

if (cur < len(haystack )) {

if (needle == @haystack[cur]) {

cur

} else {

index(haystack , needle, (cur + 1))

}

} else {

len(haystack)

}

} in

let lookup = \(arr , i, cur) => {

if (cur == len(arr)) {

-1

} else {

if (i == cur) {

@arr[cur]

} else {

lookup(arr , i, (cur + 1))

}

}

} in

let ⟨keys, values⟩ = ⟨ptxts(0, 7), ptxts(8, 15) ⟩ in

let key = ctxt(0) in

let idx = index(keys , key, 0) in

lookup(values , idx, 0)

Fig. 2. COIL snippet implementing associative array by using the index of a private key to look up a value

At a high level, the COIL compiler first translates the program into a path forest to perform
optimizations on it, and then lowers it to FHE primitives (Figure 1). More precisely, COIL is a
staging compiler with two stages:

(1) When plaintext inputs become available, they are used to “untangle” the program’s control
flow into a path forest, resulting in a program that is partially evaluated with respect to the
plaintexts (as detailed in Figure 6).

(2) The partially evaluated path forest, which now represents only ciphertext computation, is
interpreted as a decision tree and lowered to vectorized FHE primitives for decision tree
inference such as COPSE [27].

Note that this framing implies that the transformations done by COIL are secure-by-construction:
they cannot possibly leak any private information, as they are all performed when only plaintext
inputs are available. In fact, the ciphertext inputs only become available at runtime, when they are
used to execute the final generated FHE code.

The remainder of this section describes each stage in more detail, and walks through compiling
the running example shown in Figure 2, which implements indexing into an associative array with
a private (ciphertext) key: the index function determines the index of the key in the array, which
the lookup function uses to retrieve the value7, returning -1 if the key is not found.

7Note that in the example, since key is a ciphertext, the computed index idxmust also be a ciphertext, so we cannot directly
index an array with it (Section 4.1).
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3.1 Building a Path Forest
The first stage of the compiler builds a path forest by iterating through the following steps:

• Add a path to the forest for each ciphertext-dependent branch.
• Whenever the value of a ciphertext variable can be determined along a particular path,
“specialize” that copy of the variable to a plaintext and substitute its value.

• Evaluate any plaintext-dependent branches (i.e. branches that can be determined from
public inputs alone) to “prune” away unreachable paths. In particular, this includes branches
that have been made plaintext-dependent by the previous step.

Armed with our intuition of the first stage as a partial evaluator, we might expect that applying
the procedure above to the example in Figure 2 yields a forest with a single path for each possible
value of the key (Figure 3b). Lets see why:

Assume the calls to get_ptxt_array() return the arrays [1; 2; 3] and [1; 4; 9] for keys
and values, respectively. First, call to the index function gets specialized to produce:

let idx = if (0 < len(keys)) {

if (key == @keys [0]) {

0

} else {

index(keys , key, 1)

}

} else {

len(keys)

} in . . .

Since both len(keys) and 0 are plaintexts, the second branch of the conditional gets pruned away:
let idx = if (key == @keys [0]) {

0

} else {

index(keys , key, 1)

} in . . .

and finally, the ciphertext-dependent branch gets converted into the following two paths:
[key == keys [0]] idx = 0;

[key != keys [0]] idx = index(keys , key, 1);

This process continues recursively for the remaining call to index, and similarly for the call to
lookup in the following line, eventually yielding the path forest shown in Figure 3a.
Specializing on possible values of ciphertexts does not leak any information. For instance,

although key and idx are ciphertexts, their values are uniquely determined on any particular path,
allowing them to be replaced by plaintexts along each path. Importantly, using plaintexts for key
and idx does not leak information: Even though each path is evaluated using plaintext values,
every path is still evaluated, and the appropriate result is selected securely (Section 5.1).
In a final round of pruning and specialization, the paths that contain conflicting values of idx

are removed, and the now-plaintext indices into the values array are resolved, reducing Figure 3a
into the final forest in Figure 3b.

3.2 Path Forests are Decision Trees
Looking at the path forest in Figure 3b, we notice that the first path can be distinguished from the
last three by the condition key == 1, the bottom three paths can be further distinguished by the
condition key == 2, and the last two paths can be distinguished by key == 3. The program control
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[key == keys[0]] idx = 0; [idx == 0] values[0]
[idx != 0] [idx == 1] values[1]

[idx != 1] [idx == 2] values[2]
[idx != 2] -1

[key != keys[0]] [key == keys[1]] idx = 1; [idx == 0] values[0]
[idx != 0] [idx == 1] values[1]

[idx != 1] [idx == 2] values[2]
[idx != 2] -1

[key != keys[0]] [key != keys[1]] [key == keys[2]] idx = 2; [idx == 0] values[0]
[idx != 0] [idx == 1] values[1]

[idx != 1] [idx == 2] values[2]
[idx != 2] -1

[key != keys[0]] [key != keys[1]] [key != keys[2]] idx = 3; [idx == 0] values[0]
[idx != 0] [idx == 1] values[1]

[idx != 1] [idx == 2] values[2]
[idx != 2] -1

(a) Extracted path forest

[key == 1] idx = 0; 1
[key != 1] [key == 2] idx = 1; 4
[key != 1] [key != 2] [key == 3] idx = 2; 9
[key != 1] [key != 2] [key != 3] idx = 3; -1

(b) After further pruning and specialization (c) Decision tree

Fig. 3. Applying the path forest evaluation technique to Figure 2

flow can therefore be encoded as a decision tree (as in Figure 3c), and evaluating the tree to make
an inference corresponds to executing the program. The path to the inferred label corresponds to
the path through the program, and the label itself corresponds to the program’s return value. The
last step is to generate code for secure decision tree inference.

3.3 Efficient Decision Tree Inference
While we could compile down to a mux network that implements our final decision tree, we instead
compile it into vectorized FHE primitives that implement the more efficient COPSE algorithm for
decision tree inference [27]. The COPSE algorithm exploits the ciphertext-packing capabilities
of many FHE schemes (Section 2.2) to accelerate decision tree inference by first vectorizing the
computaton of each branch condition (i.e. key == 1, key == 2, etc. are all vectorized together),
evaluating each level of the tree in parallel, and then accumulating the levels to obtain the final result.
The COPSE algorithm is described further in Section 5.1. At this point, we can also use traditional
vectorization techniques to further optimize the inference [12, 26, 33]. Section 4.5 discusses our
code generation strategy in more detail.

3.4 COIL Discovers Good Implementations
COIL often automatically generates code equivalent to well-known expert-coded implementations
without requiring any special programmer knowledge. For example, a well-known strategy for
associative array lookup8 involves first computing a “one-hot” indicator vector encoding the
position of the key:

8This strategy is adapted from MPC folklore (e.g. https://www.zama.ai/post/encrypted-key-value-database-using-
homomorphic-encryption) and is often used as a secure array indexing primitive in larger protocols [6, 7]
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NumExpr 𝑒 F 𝑥 variable
| 𝑛 numeric literal
| ptxt(𝑛) plaintext input
| ctxt(𝑛) ciphertext input
| if (𝑏) {𝑒1} else {𝑒2} conditional
| let 𝑥 = 𝑝1 in 𝑝2 variable definition
| mux(𝑏, 𝑒1, 𝑒2) multiplexer
| @𝑎𝑟𝑟 [𝑒1] array index
| update 𝑎𝑟𝑟 { 𝑛1 → 𝑒1, . . . , 𝑛𝑘 → 𝑒𝑘 } in 𝑝 array update
| (𝑒1 · 𝑒2) arithmetic
| 𝑓 (𝑒1, . . . , 𝑒𝑛) function call

BoolExpr 𝑏 F 𝑒1 ≡ 𝑒2 equality
| 𝑒1 < 𝑒2 inequality
| ¬𝑏 negation

CoilProgram 𝑝 F 𝑒 numeric expression
| [𝑒1; 𝑒2; . . . ; 𝑒𝑛] array literal
| ctxts(𝑛1, 𝑛2) ciphertext array
| ptxts(𝑛1, 𝑛2) plaintext array
| let 𝑓 = 𝜆(𝑥1, . . . , 𝑥𝑛) ⇒ {𝑒} in 𝑝 function definition

Fig. 4. Syntax of the COIL language. Note that themux production is only added for the purposes of the
discussion in Section 7, and is not used in any of our benchmarks otherwise.

let idx = [key == keys[0], key == keys[1], . . . ]

and then computing a dot product between this vector and the values:

let value = dot(idx, values)

We can compare this strategy to the one COIL generates from the implementation in Figure 2.
After pruning and unraveling all the control flow paths, the only conditionals left to compute are
the ones of the form “key == keys[i]”, which the COPSE algorithm vectorizes together, similar
to the first step of the dot product strategy described above. Furthermore, COPSE’s parallelized
level evaluation and accumulation (described in more detail in Section 5.1) turns out to be roughly
equivalent to the dot product step. Overall, given a naïve implementation of associative array
lookup, COIL automatically discovers something very similar to what a cryptographic expert might
write. This phenomenon is further discussed in Section 6.2.

4 DESIGN
This section first describes the COIL language (Section 4.1), then explores in more detail the
transformations done in the first compilation stage (Sections 4.2-4.3), and finally discusses how
COIL generates code from a path forest.

4.1 Language Design
COIL is a high-level language that supports arrays with a publicly known length, recursion,
conditional expressionswith both plaintext and ciphertext conditions, and basic arithmetic operators
over both encrypted (i.e. “private” or “ciphertext”) and unencrypted (i.e. “public” or “plaintext”)
inputs (Figure 4). COIL uses a staging compiler, which means that programs are compiled in multiple
stages [23]. The first stage compiles a COIL program down to the path forest IR (Figure 5) by partially
evaluating it with respect to the public inputs when they become available, and then performs
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Expr 𝑒 F 𝑛 numeric literal
| ptxt(𝑛) plaintext literal
| ctxt(𝑛) ciphertext literal
| 𝑒1 · 𝑒2 arithmetic
| . . .

PathClause 𝑐 F 𝑒1 ≡ 𝑒2 equality
| 𝑒1 < 𝑒2 inequality
| ¬𝑏 negation

Path 𝑝 F [𝑐1] . . . [𝑐𝑛]
PathForest 𝑓 F (𝑝1, 𝑒1); . . . ; (𝑝𝑛 , 𝑒𝑛)

Fig. 5. Syntax of the path forest IR. Note that Expr technically also includes the other syntactic forms from
COIL programs, but the compilation process eventually rewrites all of these to one of the final forms listed in
the grammar.

J(𝑝, 𝑛)KΓ ≜ (𝑝, 𝑛) where 𝑛 is a numeric, ptxt, or ctxt literal

J(𝑝, 𝑥)KΓ ≜ (𝑝, Γ(𝑥)) if 𝑥 is a variable bound in Γ

J(𝑝1, 𝑒1); . . . ; (𝑝𝑛, 𝑒𝑛)KΓ ≜ J(𝑝1, 𝑒1)KΓ ; . . . ; J(𝑝𝑛, 𝑒𝑛)KΓ

J(𝑝, let 𝑥 = 𝑒1 in 𝑒2)KΓ ≜ J(𝑝′, 𝑒2)KΓ [𝑥 ↦→𝑒′ ] ; . . . for each (𝑝′, 𝑒′) ∈ J(𝑝, 𝑒1)KΓ

J(𝑝, if (𝑏) {𝑒1} else {𝑒2})KΓ ≜ J(𝑝′ [𝑏′], 𝑒1); (𝑝′ [¬𝑏′], 𝑒2)KΓ ; . . . for each (𝑝′, 𝑏′) ∈ J(𝑝,𝑏)KΓ

J(𝑝, 𝑓 (𝑒1, . . . , 𝑒𝑛))KΓ ≜ J(𝑝 𝑝′1 . . . 𝑝
′
𝑛, 𝑒)KΓ[𝑥𝑖 ↦→𝑒′𝑖 ] ; . . . where Γ(𝑓 ) = 𝜆(𝑥1, . . . , 𝑥𝑛) ⇒ {𝑒},

for each (𝑝′𝑖 , 𝑒
′
𝑖 ) ∈ J(𝑝, 𝑒𝑖 )KΓ

J(𝑝, 𝑒1 · 𝑒2)KΓ ≜ J(𝑝′𝑖 𝑝
′′
𝑗 , 𝑒

′
𝑖 · 𝑒

′′
𝑗 )K

Γ ; . . . for each (𝑝′𝑖 , 𝑒
′
𝑖 ) ∈ J(𝑝, 𝑒1)KΓ

and (𝑝′′𝑗 , 𝑒
′′
𝑗 ) ∈ J(𝑝, 𝑒2)KΓ

Fig. 6. The transformations done by the COIL compiler are implemented in the J·KΓ operator, which succes-
sively rewrites terms in the path forest IR. Γ is a context mapping variables to normal-form (let-free, if-free,
and function-free) expressions. The rewrite rules for update and array indexing are similar to the rules for
let-bindings and arithmetic, and are omitted for clarity.

optimizations on this IR (Section 4.4) [21]. The second stage further lowers the path forest IR into
vectorized FHE instructions that can execute once the ciphertext inputs are available.

To fit the encrypted computation paradigm, the language imposes restrictions on programs:
• All array indices must be publicly known9
• Recursion must terminate based on publicly known inputs, since function calls are resolved
in the first stage (Section 4.3).

In the example program in Figure 2, the first restrictionmeans that since cur is used as an array index
in both index and lookup, it must be a plaintext input. The example satisfies the second restriction
because, for instance, the recursive calls to index can be inlined until cur == len(array), and
since the condition is a plaintext, the unfolding can be done entirely in the first stage.

9Ciphertext indices are possible by, for example, writing an array indexing function (such as the one described in Section 3.4).
The staged design of the language allows this to happen with zero abstraction overhead, as discussed later in this section.
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let midpoint = \(x, y) => {

if ((y - x) < 2) {

x

} else {

midpoint ((x + 1), (y - 1))

}

} in

let binary_search = \(arr, key, lo, hi) => {

let mid = midpoint(lo, hi) in . . .

} in . . .

Fig. 7. Snippet of a COIL program implementing a binary search
over an array of encrypted data. While the language does not
natively support division, the programmer can implement a
midpoint function over plaintexts without incurring a run-time
overhead.

4.2 Compilation
The first stage of compilation requires lowering a COIL program (Figure 4) to the path forest
intermediate representation, the syntax for which is shown in Figure 5, and then optimizing the
resulting forest. A term in the IR (a “forest”) consists of a set of tuples (𝑝, 𝑒), where each 𝑝 can be
thought of as a sequence of boolean conditions that must be true for the program to evaluate to the
corresponding expression 𝑒 . A tuple (𝑝, 𝑒) is said to be in normal form if the expression 𝑒 contains
no function calls, let-bindings, branches, or array index/update expressions.
One way to accomplish the lowering is by embedding a COIL program P into the path forest

IR as (true,P), and then inductively applying the transformations in Figure 6 until the resulting
forest is in normal form.
Of particular importance are the rewrite rules for let-bindings, if-statements, and arithmetic.

Given an arithmetic expression like 𝑒1 · 𝑒2, for every pair of expressions that the operands 𝑒1 and 𝑒2
could evaluate to, we generate a path that produces the result of applying the operation “·” to the pair.
The rule for if is similarly straightforward: the expression if (𝑏) {𝑒1} else { 𝑒2 } can be translated
into two paths; one that computes 𝑒1 under the condition 𝑏, and one that computes 𝑒2 under
the condition ¬𝑏. Finally, the rule for let-bindings (together with the Γ-lookup rule) implements
substitution: when encountering an expression of the form let 𝑥 = 𝑒1 in 𝑒2, we generate paths
that replace 𝑥 with every possible result of evaluating 𝑒1. Note that some of the transformations
described above have a multiplicative effect on the total number of paths, meaning that before
optimizations, the size of the generated forest is roughly exponential in the number of ciphertext-
dependent branches in the original program. In practice, however, we find that many of these
branches are highly correlated, which makes some paths infeasible and thus able to be pruned
(Section 4.3). This exponential effect is discussed further in Section 7.

Example. Consider the COIL expression below:

z + (let w = if (x < y) { y } else { x } in 2 * w)

Following the arithmetic and let rules, we first evaluate the expression if (𝑥 < 𝑦) {𝑦} else {𝑥}. From
the if rule, we see that this results in a forest with two paths: “(𝑥 < 𝑦,𝑦); (𝑥 ≥ 𝑦, 𝑥)”. Substituting
these paths in for𝑤 in the let binding, we get: “(𝑥 < 𝑦, 2 ∗ 𝑦); (𝑥 ≥ 𝑦, 2 ∗ 𝑥)”. Finally, we can apply
the arithmetic rule. Since the left operand (𝑧) can only evaluate to itself, and the right operand (the
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let binding) can evaluate to either 2 ∗𝑦 or 2 ∗ 𝑥 , the final forest we get for the arithmetic expression
looks like: “(𝑥 < 𝑦, 𝑧 + 2 ∗ 𝑦); (𝑥 ≥ 𝑦, 𝑧 + 2 ∗ 𝑥)”.

4.3 Optimizations on Path Forests
Recall from Section 3 that the key principle behind COIL’s compilation strategy is that path forests
enable path-dependent optimization. In this section, we describe how to adapt the rewrite rules
to include the two main optimizations COIL employs: specializing known (plaintext) values, and
pruning unreachable paths.

4.3.1 Specialization. Consider again the example in Section 4.2. Notice that if the variables 𝑥 and
𝑦 are plaintexts, then by the time we’ve generated the forest (𝑥 < 𝑦, 2 ∗ 𝑦); (𝑥 ≥ 𝑦, 2 ∗ 𝑥), we know
the value of the expressions 2 ∗ 𝑥 and 2 ∗ 𝑦, so we can replace each expression with the result of
evaluating it. This can be implemented by adding the following rule to our list:

J(𝑝, 𝑒)KΓ ≜ (𝑝, eval(𝑒)) if 𝑒 can be evaluated as a plaintext

(Here, the eval function implements the usual semantics for evaluating plaintext expressions like
arithmetic, etc.) Applying this optimization has a few results. Of course, this reduces the total
amount of computation that needs to happen during the second (ciphertext) stage. Furthermore,
since all plaintext array indices can now be computed at staging-time, the language can operate
over arrays without needing the arrays to show up in the final ciphertex computation. Finally, it
enables programming with zero-cost abstractions. For example, consider the snippet of a binary
search implementation in Figure 7 in which the programmer writes a function that loops to compute
the midpoint of two indices10. Since the midpoint function is only called on plaintext inputs (lo
and hi), it can be executed entirely in the first (plaintext) stage, obviating the need to execute the
expensive loop over ciphertext inputs in the second stage.

4.3.2 Pruning. When 𝑥 and 𝑦 are both plaintexts, then by the time we’ve generated the forest
(𝑥 < 𝑦,𝑦); (𝑥 ≥ 𝑦, 𝑥), we already know which of the paths is going to be taken; Hence, the other
one can be removed. In particular, we replace the if-rule in Figure 6 with the following:

J(𝑝, if (𝑏) {𝑒1} else {𝑒2})KΓ ≜


J(𝑝 𝑝′, 𝑒1)KΓ ; . . . 𝑝 =⇒ 𝑏′

J(𝑝 𝑝′, 𝑒2)KΓ ; . . . 𝑝 =⇒ ¬𝑏′

J(𝑝′ [𝑏′], 𝑒1); (𝑝′ [¬𝑏′], 𝑒2)KΓ ; . . . otherwise

When encountering a branching condition 𝑏, we generate the queries 𝑝∧𝑏 and 𝑝∧¬𝑏 and discharge
them to a solver11; if one of these queries is shown to be unsatisfiable, we avoid generating the
corresponding path. In particular, this means that paths are pruned if they can be proven unreachable
based on information available at staging time, even if the condition itself is not plaintext!

4.4 Recursive Functions
In addition to producing smaller path forests (and therefore more efficient ciphertext computation),
the optimizations described above also enable COIL to gracefully compile programs with recursive
functions without requiring any special care. Recall that the original form of the rewrite rules
presented in Figure 6 fails to terminate in the presence of recursive functions. In particular, the
original if rule always generates two paths, which means it always expands the recursive case, and
10Writing a function to calculate midpoints is necessary because most FHE schemes do not natively support integer division,
and hence COIL does not provide a division operator.
11In our implementation, we discharge these queries to a lightweight custom solver capable of reasoning about linear
arithmetic and inequalities. We could instead discharge to a more full-featured SMT solver and potentially be able to prune
more paths at the cost of longer compile times.
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hence expansion never terminates! In contrast, if at some point during compilation COIL can prove
that the recursive branch does not get taken, then the new version of the if rule that incorporates
pruning will generate only the path for the base case. Note that the second condition in Section 4.1
guarantees that at some point during compilation, COIL will be able to prune the recursive path.

Example. Consider the following COIL snippet which calculates the maximum value in an array of
two elements:

let max = \(arr , cur , len , acc) => {

if (cur == len) { acc } else {

let newMax = if (@arr[cur] > acc) { @arr[cur] } else { acc } in

max(arr , cur + 1, len , newMax)

}

} in max(arr, 0, 2, 0)

Applying the function call rule gives us:

if (0 == 2) { 0 } else {

let newMax = if (@arr [0] > 0) { @arr [0] } else { 0 } in

max(arr , 1, 2, newMax)

}

Now, we apply the new if rule, which immediately prunes the first branch of the conditional and
yields:

let newMax = if (@arr [0] > 0) { @arr [0] } else { 0 } in

max(arr , 1, 2, newMax)

and then the forest:

(𝑎𝑟𝑟 [0] > 0, max(𝑎𝑟𝑟, 1, 2, 𝑎𝑟𝑟 [0])); (𝑎𝑟𝑟 [0] ≤ 0, max(𝑎𝑟𝑟, 1, 2, 0))

Expanding the recursive call in each path again yields the forest:

(𝑎𝑟𝑟 [0] > 0 ∧ 𝑎𝑟𝑟 [1] > 𝑎𝑟𝑟 [0], max(𝑎𝑟𝑟, 2, 2, 𝑎𝑟𝑟 [1]));
(𝑎𝑟𝑟 [0] > 0 ∧ 𝑎𝑟𝑟 [1] ≤ 𝑎𝑟𝑟 [0], max(𝑎𝑟𝑟, 2, 2, 𝑎𝑟𝑟 [0]));
(𝑎𝑟𝑟 [0] ≤ 0 ∧ 𝑎𝑟𝑟 [1] > 0, max(𝑎𝑟𝑟, 2, 2, 𝑎𝑟𝑟 [1]));
(𝑎𝑟𝑟 [0] ≤ 0 ∧ 𝑎𝑟𝑟 [1] ≤ 0, max(𝑎𝑟𝑟, 2, 2, 0))

Finally, for each call to max(arr, 2, 2, . . . ) COIL can immediately prove 2 == 2 and thus
expand only the base case, yielding the forest:

(𝑎𝑟𝑟 [0] > 0 ∧ 𝑎𝑟𝑟 [1] > 𝑎𝑟𝑟 [0], 𝑎𝑟𝑟 [1]);
(𝑎𝑟𝑟 [0] > 0 ∧ 𝑎𝑟𝑟 [1] ≤ 𝑎𝑟𝑟 [0], 𝑎𝑟𝑟 [0]);
(𝑎𝑟𝑟 [0] ≤ 0 ∧ 𝑎𝑟𝑟 [1] > 0, 𝑎𝑟𝑟 [1]);
(𝑎𝑟𝑟 [0] ≤ 0 ∧ 𝑎𝑟𝑟 [1] ≤ 0, 0)

which computes the maximum as desired.
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4.5 Generating Code
The second stage of the COIL compiler takes the optimized path forest produced from the steps
described above, and uses it to generate FHE code that operates on ciphertext inputs. The basic code
generation strategy starts by using the COPSE algorithm [27] to generate code that simultaneously
executes each path in the forest, vectorizing together all the path conditions at each step to produce
a ciphertext that encodes which path has all its conditions satisfied. The expressions at the end of
each path are then vectorized together, and the ciphertext is used to select the correct expression
to return. Section 5.1 describes the details of the COPSE algorithm.

5 IMPLEMENTATION
In this section, we discuss the implementation of COIL: the specifics of the vectorized decision tree
inference algorithm (Section 5.1) and our choice of FHE scheme (Section 5.2).

5.1 Efficient Decision Tree Evaluation via COPSE
COPSE is an algorithm for performing private decision tree inference that supports multithread-
ing and takes advantage of the vectorizing capabilities of RLWE-based encryption schemes [27]
(Section 2.2). The COPSE algorithm consists of three steps:

(1) Comparison: All the branching conditions in the tree are vectorized together and evaluated
simultaneously

(2) Level Processing: For each depth level of the tree, all the branches at that level are analyzed
to exclude unreachable labels. This is done via vectorized matrix operations, and each level
can be processed in parallel.

(3) Accumulation: The results from processing each level are combined to determine the single
label representing the result of evaluating the tree

The COIL implementation slightly modifies the Comparison step described above. The original
COPSE algorithm evaluates decision trees in which the branching conditions are all of the form
𝑥𝑖 < 𝛼𝑖 . COIL relaxes this assumption to allow for decisions of the form exp1 < exp2 or exp1 ==
exp2 for arbitrary expressions exp1 and exp2, such as the tree in Figure 8. In particular, we first
vectorize together all the exp1 and (separately) all the exp2 (e.g. computing vectors [a; b; a-b]
and [b; a; b]), then compare the resulting vectors using both == and <, and finally blend the
comparison results together to correspond to the actual sequence of decisions in the tree. For the
expression vectorization we use Coyote, an off-the-shelf vectorizer specifically designed for FHE
applications [26].

5.2 Choice of FHE Scheme
Here we justify our choice of FHE scheme for the COIL backend; namely, the mod-2 variant of the
BFV/BGV scheme.
FHE schemes can be broadly characterized along two dimensions: vectorized vs unvectorized

schemes, and boolean vs arithmetic schemes. Vectorized schemes, such as CKKS and BFV/BGV,
support ciphertext packing (Section 2.2), which allows for computing multiple operations in parallel
at the cost of each operation being relatively slow. In contrast, individual homomorphic operations
in unvectorized schemes such as TFHE and CGGI tend to be much faster, but these schemes can
only execute one operation at a time. In order to fully take advantage of the COPSE algorithm’s
vectorizability, we restrict ourselves to vectorized schemes.

In boolean schemes like TFHE, CGGI, and mod-2 variants of BFV/BGV, ciphertexts are encryptions
of bits, and primitive homomorphic operations correspond to logical gates like AND and XOR.
In arithmetic schemes like CKKS and mod-p variants of BFV/BGV, ciphertexts instead encrypt
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Fig. 8. Decision tree computing a bounded GCD

integers12, with the primitive homomorphic operations being addition and multiplication. While
arithmetic operations are much more efficient in arithmetic schemes (evaluating a single addition
operation is much cheaper than evaluating a binary adder circuit), they struggle with computing
non-smooth functions that are not easily approximated by a polynomial. Since COIL primarily
targets computations with branching decisions, and the comparison function 𝑓 (𝑥,𝑦) = 𝑥 < 𝑦 is
non-smooth, our backend needs to use a boolean scheme, and this in particular restricts us to using
mod-2 BFV/BGV.

6 EVALUATION
To determine the effectiveness of the compilation techniques presented in this paper, we ask the
following research questions:

• RQ1:How efficient are the programsCOIL generates compared to other compilation
strategies? We compile a set of benchmarks with COIL and compare the run times against
those of naive implementations13

• RQ2: How does COIL compare to known custom protocols?We compare the COIL
run times to those of expert-designed protocols for a subset of our benchmarks

• RQ3: What kinds of optimizations does COIL enable? We discuss the challenges
associated with implementing our merge benchmark, and analyze how COIL’s unique
compilation strategy enables optimization opportunities that address these challenges.

All experiments are run on 2020 M1 MacBook Air with 16GB of RAM; the values reported are
the medians across eleven runs and a 95% confidence interval.

6.1 How efficient are the programs COIL generates?
There is no standard set of FHE benchmarks, and especially no set that make use of conditionals
over ciphertext. We evaluate COIL on the following set of benchmarks that rely on conditionals
and implement several common kernels:

(1) linear_index, looking up a ciphertext index into an array of 16 elements via a linear scan
(2) log_index, looking up a ciphertext index into an array of 16 elements via a binary search
(3) sp_auction, determining the winning bidder and bid in a second-price auction with 8

bidders
(4) filter, using a threshold predicate to filter a list of 8 elements
(5) merge, merging two sorted 5-element arrays into a sorted array of 10 elements
(6) associative_array, using a secure key to look up a value in an associative array of 8

elements
12Technically, CKKS ciphertexts encrypt rational numbers with respect to some fixed-point precision.
13Our naive implementations are manually transliterated from the COIL surface language to C++. An example of this
translation is shown in Figure 10b.
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Fig. 9. Running time of each benchmark. The reported COIL times include both the online and offline phase.
Naïve merge times out after 30 minutes.

Benchmark Stage 1 Stage 2 Total

linear_index 25 ms 290 ms 315 ms
log_index 48 ms 263 ms 311 ms
sp_auction 57 ms 370 ms 427 ms
merge 120 ms 6730 ms 6850 ms
filter 31 ms 1539 ms 1570 ms
associative_array 24 ms 277 ms 301 ms

Table 1. COIL compile times broken down by stage

Each benchmark is implemented in COIL’s surface language (Figure 4), and compiled down to calls
to the HElib library [20] using the mod-2 BGV scheme.

The compilation times for each benchmark are reported in Table 1, broken down by stage. Notice
that with the exception of merge, the compilation time is negligible (on the order of a few hundred
milliseconds). The high compile time for merge can be attributed to the combinatorial explosion of
paths, a phenomenon which is discussed in more detail in Section 6.3.
The time each benchmark takes to run is reported in Figure 9. We see that COIL outperforms

naïve implementations, sometimes by as much as two orders of magnitude. These speedups are most
prominent on the benchmarks containing instances of an array being indexed by a ciphertext, as
COIL’s unique specialization and pruning strategy is able to avoid the overhead of these expensive
indexing operations. In fact, the data for the naïve implementation of the merge benchmark is
missing: even on modest input sizes (e.g. merging two arrays of size 5) it times out after 30 minutes.
Section 6.3 analyzes where COIL’s speedups come from on this benchmark.

6.2 How does COIL compare to known custom protocols?
With some of our benchmarks, a naïve translation of a COIL implementation is unfair, as we
already know of efficient specialized protocols that implement them. In particular, we can use
the one-hot vector + dot product strategy described in Section 3.4 for linear_index, log_index,
and associative_array, a single vectorized comparison + mux for filter, and part of a custom
𝑘-way sorting protocol for merge [22].
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Benchmark COIL time (s) Expert time (s)

linear_index 2.4 11.4
log_index 1.2 11.4
associative_array 1.4 12.5
filter 8.8 1.9
merge 9.5 84.2

Table 2. Comparing COIL to custom implementations

let merge =

\(arr1, arr2, out, i1, i2, j) => {

. . .

if (@arr1[i1] < @arr2[i2]) {

update out {j := @arr1[i1]} in

merge(arr1, arr2, (i1 + 1), i2 , out j)

} else {

update out {j := @arr2[i2]} in

merge(arr1, arr2, i1, (i2 + 1), out, j)

}

. . .

} in . . .

(a) Implementation of merge in COIL

ctxt i1, i2 = encrypt (0);

for (int i = 0; i < len(arr1) + len(arr2);

i++)

{

ctxt arr1Val = index(arr1 , i1);

ctxt arr2Val = index(arr2 , i2);

ctxt b = compare(arr1Val, arr2Val);

output[i++] = mux(b, arr1Val, arr2Val);

i1 = mux(b, i1 + 1, i1);

i2 = mux(b, i2, i2 + 1);

}

(b) Naïve implementation of merge in C++

Fig. 10. Example snippets merging two sorted arrays of ciphertexts in C++ and in the COIL surface language.
Note that an actual implementation of merge would include bounds checks for the two indices i1 and i2;
these checks have been omitted from the above code for the sake of clarity.

Table 2 compares the COIL’s running time to each of these custom protocols. The results are
summarized in Notice that with the exception of filter, the COIL version outperforms its associated
custom protocol! The poor performance of COIL on filter is perhaps unsurprising: a majority of
COIL’s benefits come from its ability to specialize ciphertext computation into plaintext, and this is
a pattern largely missing from the filter benchmark. In fact, even the naïve implementation does
reasonably well (though notably, not as well as COIL!) just by looping over the array, performing a
comparison and conditional write at each (plaintext) index.
In contrast, we see significant speedups on other benchmarks. This is, again, unsurprising for

secure array indexing and associative array lookup: Recall from Section 3.4 that the COIL evaluation
strategy essentially recovers something very similar to the usual dot product strategy, and the fact
that we can parallelize decision tree evaluation further speeds up the dot products [27]. Explaining
the speedup for merge is far more interesting, and its worth taking some time to dissect this
benchmark properly.

6.3 Where do COIL’s speedups come from?
Figure 10 shows two partial implementations of a function that merges sorted arrays, one in
COIL’s surface language and one that naïvely translates it to C++. We first analyze the naïve
implementation, and then walk through what COIL’s evaluation strategy does to improve it.

What does a naïve merge look like? Consider the snippet in Figure 10b which naïvely implements a
merge function in C++. Each iteration of the for loop contains:

(1) Two secure array index operations



COIL: Compiling Homomorphic Circuits with Control Flow 17

(2) A comparison on the results of the lookups
(3) Two oblivious updates to the array indices

The naïve implementation performs multiple inefficient secure array lookups, each of which
contributes nontrivially to the overall multiplicative depth. Furthermore, the entire procedure is
inherently sequential, making it difficult to recover performance via parallelization or vectorization.
Finally, since each iteration uses the ciphertext index values updated from the previous iteration,
the total multiplicative depth stacks, resulting in circuits that either require huge parameters to
evaluate or multiple expensive rounds of bootstrapping. Given this, it is perhaps unsurprising that
our naïve implementation of merge times out after running for 30 minutes (Figure 9).

What does COIL do differently? The COIL evaluation strategy transforms the snippet in Figure 10a
into something much more efficient. Each specialization/pruning step inlines one level of the
recursive merge call, eventually unfolding the entire program into a large binary tree representing
every possible way to merge the lists. Since every node in the binary tree corresponds to a single
possible pair of values for i1 and i2, each of the array indexing expressions (@arr1[i1] and
@arr2[i2]) are specialized to those particular indices, eliminating the need for secure indexing.
Finally, the decision tree protocol chooses which merged array to select.
First, by specializing all the array indices into plaintext values, we obviate the need for the

expensive secure index operations that the naïve implementation uses; in particular, this greatly
reduces the multiplicative depth of the overall circuit, allowing it to be evaluated with smaller
parameters (or without as much bootstrapping). Second, by separating out all the paths through the
function we greatly increase the amount of parallelism available: every array comparison can be
evaluated in parallel, and selecting the correct path at the end can be done via efficient parallelized
and vectorized operations [27]. In fact, notice that these exactly solve the issues with the naïve
implementation!

At this point the reader may notice that there are an exponential number of ways to merge two
lists, and hence an exponential number of paths to evaluate. Certainly, separating out all the control
flow paths seems like a very bad idea: the amount of work increases from 𝑂 (𝑛2) to something like
𝑂 (4𝑛). However, we also go from having to evaluate everything sequentially to having multiple
degrees of parallelism, as well as being able to exploit ciphertext batching. Of course, at some point
the size of the arrays grows beyond what the (admittedly large) FHE vectors can reasonably hold,
and we need a new approach. Indeed, there are several optimizations that can be performed on
top of the version of the COIL strategy presented here to allow it to scale to significantly larger
programs. These are discussed in more detail in the next section.

7 DISCUSSION
In this section we briefly describe possible ways to deal with the exponential number of paths that
can result from applying the path forest strategy to certain programs.

7.1 Control Flow Linearization
Recall from the discussion in Section 6.2 that the filter benchmark benefits very little from path
forest strategy compared to the optimized protocol, in particular because the benchmark does not
contain many instances of ciphertext computation that can be specialized to plaintext. In other
words, COIL still incurs the overhead of unfolding every path without being able to make up for
it. One might instead consider a strategy that avoids unfolding branches which do not result in a
benefit from pruning and specialization, and hence are not “worth it”. This, in fact, corresponds
to a well-known technique called control flow linearization, in which branches are eliminated by
turning a control flow dependence into a data dependence (such as a mux). [1, 3, 15, 24, 28]
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Table 3. Effect of manually linearizing filter benchmark

filter.lin filter.naive filter.coil filter.expert
5.3s 17.9s 8.9s 1.88s

Control flow linearization is entirely compatible with COIL’s compilation strategy. A mux function
is, from the perspective of the language, just another branchless computation: Bymanually rewriting
certain branches as muxes, the programmer can ensure that they do not get unfolded by the path
forest conversion process, and thus do not contribute to the exponential blowup. We investigate
the effects of manual linearization by adding a ternary muxing operator to the COIL language and
rewriting the filter benchmark to use this instead of explicit branches. Since Coyote does not
currently support vectorizing ternary operations, we compile “mux(b, x, y)” into the arithmetic
expression “b * (x - y) + y”. The results of this manual linearization are shown in Table 3. As
expected, the manually linearized version of filter outperforms both the naive and the branching
COIL implementations, although, notably, the expert implementation is still better since it uses
an efficient mux instruction instead of simulating it with arithmetic. However, these preliminary
results demonstrate that the techniques presented in this paper can be used in conjunction with
traditional control flow linearization techniques to mitigate the path explosion problem.
Of course, for programs more complex than filter, writing out the full multiplexed circuit by

hand is tedious and sometimes prohibitively difficult. A more sophisticated compiler can perform
an analysis to determine which branches should not get unfolded, and in a compilation pass before
COIL automatically replace these branches with muxes; applying the COIL strategy presented
in this paper to the resulting program will correctly linearize the identified branches and unfold
the others. While our current implementation of COIL does not perform this analysis, it is an
interesting future direction to pursue.

7.2 Blocking
While COIL can amortize much of the exponential blowup via vectorization and parallelism, FHE
vector widths are not infinite. This restriction is particularly relevant to the COPSE algorithm, which
treats decision tree evaluation as a series of matrix multiplications, and exploits ciphertext batching
by packing matrices into ciphertext vectors large enough to hold them. A common workaround is
blocking: If a particular set of FHE parameters allows for vectors capable of operating on 1000×1000
matrices, we can operate on an 8000 × 8000 matrix simply by blocking it into 64 submatrices
and then operating on each submatrix. Of course, blocking gives up the asymptotic benefits of
vectorization as the demand for vector lanes increases. However, FHE vectors are incredibly wide,
still allowing for significant speedups over the alternative.

8 RELATEDWORK
8.1 Compiling Oblivious Control Flow
The Google Transpiler [18] compiles a subset of C++ into FHE calls. The Transpiler is notably
different from the other compilers listed above in that it can handle oblivious control flow: it uses
a boolean circuit-based backend, so non-polynomial comparison operators are straightforward
to implement, and conditionals can be emulated via muxes. The particular FHE backend that
the Google Transpiler uses is TFHE [11], a binary-only scheme that is not based on the Ring
Learning with Errors (RLWE) problem. While TFHE allows for incredibly fast bootstrapping and
hence lends itself well to efficient implementations of large binary circuits, it does not support the
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ciphertext batching optimization that RLWE schemes support (Section 2.2), making it unsuitable
for vectorization.
It’s worth pointing out that circuit-vectorizing compilers like Coyote [26] can be extended to

support oblivious control flow. Coyote makes no assumptions about the plaintext modulus over
which the circuit operates, so conditional statements can be compiled into muxes as usual and the
resulting boolean circuit can be given to Coyote to vectorize. However, in practice the generated
boolean circuits are too large and unwieldly to be able to effectively vectorize.

8.2 Reducing Control Flow
The problem of control flow is not unique to FHE. For programs running on GPUs, branching
control flow can mean some threads sit idle for parts of the program, resulting in low utilization and
poor performance. Various techniques have been proposed to deal with this problem [1, 3, 15, 24, 28–
30, 32]. Many of these techniques often either rely on instruction set features missing from most
FHE backends, or end up doing something semantically equivalent to muxes anyway. However, as
we noted in Section 7, applying some control flow reduction techniques to programs before using
COIL can help further improve performance.

8.3 Compilers and Optimizations for FHE
A number of FHE compilers [4, 9, 12–14, 18, 26, 33] provide a high-level surface language to write
programs in, and then compile these programs down into circuits that can be executed within FHE.
While most of these compilers do some optimizations on the generated circuits, these optimizations
do not always include vectorization. EVA [13] does support packed arithmetic, but requires the
programmer to do the vectorization manually. The FHE compilers that do automatic vectorization
[12, 26, 33] fall into two broad camps: those that attempt to vectorize arbitrary code at the circuit
level [12, 26], and those that restrict the surface language to make programs more vectorizable
by construction [14, 33]. The compilers in the first camp, Porcupine [12] and Coyote [26], use
expensive search procedures and synthesis techniques to automatically lift arbitrary arithmetic
circuits into ones that operate over packed data.

In the other camp, Airduct [14] is an array-based intermediate language for writing multiparty
computation programs. By requiring the programmer to express their computations using high-
level array operations, Airduct ensures that programs are naturally amenable to vectorization.
HECO [33] is an FHE language and compiler that takes advantage of arrays and array indexing in
the surface language to aid in making vectorization decisions. Working at this higher level rather
than at the level of circuits allows HECO to vectorize tensor programs more effectively, but the
language restrictions in both HECO and Airduct preclude support for the kinds of oblivious control
flow handled by COIL.

9 CONCLUSION
This paper presents COIL, a language and evaluation strategy for FHE programming with secure
control flow. We show how COIL can transform programs with secure control flow into path
forests, and present a strategy that executes these path forests via efficient decision tree evaluation
protocols. We demonstrate on a variety of benchmarks that COIL outperforms other state-of-the-art
techniques by up to an order of magnitude. COIL thus represents the next major step towards
making FHE programs more efficient.
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