
Circuit Optimization Using Arithmetic Table Lookups

RAGHAV MALIK, Purdue University, USA
VEDANT PARANJAPE, Purdue University, USA
MILIND KULKARNI, Purdue University, USA

Fully Homomorphic Encryption (FHE) is a cryptographic technique that enables privacy-preserving com-
putation. State-of-the-art Boolean FHE implementations provide a very low-level interface, usually exposing a
limited set of Boolean gates that programmers must use to write their FHE applications. This programming
model is unnecessarily restrictive: many Boolean FHE schemes support programmable bootstrapping, an
operation that allows evaluation of an arbitrary fixed-size lookup table. However, most modern FHE compilers
are only capable of reasoning about traditional Boolean circuits, and therefore struggle to take full advantage
of programmable bootstrapping.
We present COATL, an FHE compiler that makes use of programmable bootstrapping to produce circuits that
are smaller and more efficient than their traditional Boolean counterparts. COATL generates circuits using
arithmetic lookup tables, a novel abstraction we introduce for reasoning about computations in Boolean FHE
programs. We demonstrate on a variety of benchmarks that COATL can generate circuits that run up to 1.5×
faster than those generated by other state-of-the-art compilation strategies.

1 INTRODUCTION
Fully Homomorphic Encryption, or FHE, is a cryptographic technique that allows evaluating
functions directly on ciphertexts without access to a decryption key. FHE is a powerful tool for en-
abling secure multiparty computation, in which multiple mutually distrusting parties collaboratively
perform a computation without revealing anything about their private inputs to the other parties.
Although FHE presents a promising approach to privacy-preserving computation, writing effi-

cient FHE applications is incredibly difficult: The cryptographic overheads can make computations
over secret inputs orders of magnitude more expensive than their plaintext counterparts. Addi-
tionally, most state-of-the-art FHE implementations do not offer any high level abstractions for
writing FHE applications; programmers are instead burdened with the task of manually mapping
their computations down to the library of secure operations the implementation provides. Recent
work in this space focuses on developing compilers to automate this process [13, 17, 18, 22, 28, 31].

1.1 Boolean FHE Compilers
Boolean FHE schemes are schemes in which ciphertexts can be thought of as encryptions of bits
rather than integers (Section 2.1 explores this distinction). Libraries that implement Boolean FHE
schemes often also provide efficient implementations of a handful of Boolean gates, making them
popular targets for compilation, because existing Boolean circuit synthesis techniques can be used
to automatically translate high-level programs into circuits made up of these gates. However, these
compilation techniques often fail to take advantage of the more expressive model of computation
actually allowed by many Boolean schemes. In particular, some schemes (such as CGGI, the scheme
we use in this paper) support an operation called a programmable bootstrap (see Section 2.2), which
allows ciphertexts to be used as indices into arbitrary fixed-size lookup tables; Boolean gates can
then be encoded in these schemes via their truth tables.

Access to programmable bootstrapping means we are no longer limited to a fixed set of Boolean
gates: we can instead build lookup tables that encode more complex functions, and then use these
to build smaller circuits. For example, the schematic in Figure 1a uses standard Boolean gates (AND,

Authors’ addresses: Raghav Malik, School of Electrical and Computer Engineering, Purdue University, West Lafayette, USA;
Vedant Paranjape, School of Electrical and Computer Engineering, Purdue University, West Lafayette, USA; Milind Kulkarni,
School of Electrical and Computer Engineering, Purdue University, West Lafayette, USA.



2 Raghav Malik, Vedant Paranjape, and Milind Kulkarni

(a) An adder using Boolean gates (b) An adder using custom LUTs

Fig. 1. Circuits can be made smaller by using custom LUTs instead of traditional Boolean gates

OR, and XOR) to implement a full-adder. By instead using custom lookup tables implementing a
3-way XOR and a “majority” operation, we can express the same circuit with only two gates instead
of five (Figure 1b). (In fact, the latter circuit corresponds exactly to what an FHE expert might write
for a full adder!) Unfortunately, generating this circuit automatically with a compiler proves to be
challenging. In general, it is difficult to determine whether a given function can be expressed as a
lookup table in this way; indeed, for reasons discussed in Section 4.1, most cannot. Existing circuit
synthesis techniques therefore cannot use these custom LUTs when generating circuits.
Our key insight in this paper is that Boolean gates are the wrong abstraction to use when

programming for a scheme like CGGI. We introduce an alternative abstraction called the arithmetic
lookup table, which models all CGGI computation as (1) computing a linear combination of a group
of ciphertexts followed by (2) using the linear combination to index into a fixed-size lookup table.
This abstraction strictly generalizes the old notion of Boolean gates—in particular, a Boolean gate
is a special case of an arithmetic lookup table with particular coefficients—but comes with more
flexibility and can model a greater class of functions. Armed with this new abstraction, we can now
take advantage of the full power of programmable bootstrapping to generate circuits built out of
these custom LUTs.

1.2 COATL
In this paper, we present COATL, the first Boolean FHE compiler that uses the arithmetic LUT
abstraction to generate circuits with nontrivial custom lookup tables. Rather than synthesizing
these circuits from the ground-up, COATL takes existing Boolean circuits and identifies groups of
gates which can be merged into a single custom LUT. The particular contributions we make are:

• We develop and formalize the notion of an arithmetic lookup table, which serves as a better
model of computation in CGGI than traditional Boolean gates
• We present an algorithm that uses this formalism to determine whether an arbitrary function
can be expressed as a custom LUT
• We describe how to shrink an existing Boolean circuit by merging sequences of gates with
custom lookup tables.

We implement the above algorithm and transformations in a compiler called COATL.We use COATL
to compile a variety of common kernels, and show that it can generate circuits that outperform
their naïve Boolean counterparts by up to 1.5×.



Circuit Optimization Using Arithmetic Table Lookups 3

2 BACKGROUND
We first give preliminaries on Fully Homomorphic Encryption, and then describe CGGI, the
particular FHE scheme used in this paper.

2.1 Fully Homomorphic Encryption
Fully Homomorphic Encryption, or FHE, refers to a class of encryption schemes that allow com-
putations to be performed directly on ciphertexts by an untrusted third party, without revealing
the decryption key [15]. A common use case for FHE is computation offloading, in which a client
encrypts sensitive data and sends the ciphertexts to an untrusted evaluator, along with an evaluation
key. The evaluator uses the evaluation key to perform some computation over the ciphertexts, and
sends the encrypted result back to the client without learning anything about the inputs.
FHE schemes are often classified by how they model ciphertexts. In arithmetic schemes, ci-

phertexts represent encryptions of integers modulo some fixed large prime 𝑝 . In boolean schemes,
ciphertexts are usually thought of as encryptions of bits. We describe the scheme used in this paper
in more detail in Section 2.2.

Noise Management. Much of the security of FHE schemes comes from injecting a small amount of
noise into ciphertexts. While the noise level in a freshly encrypted ciphertext is relatively small,
performing homomorphic operations causes the noise level to grow, eventually causing decryption
to fail. Programmers must therefore be careful to limit the overall depth of their circuits, or manually
insert noise management operations called bootstrapping [16, 23].

Limitations. While FHE is a powerful technology that enables privacy-preserving computation,
its lack of easy programmability prevents it from seeing widespread use. Applications must be
programmed manually, and are usually expressed directly as circuits that transform ciphertexts
using the homomorphic operations provided by the underlying FHE scheme: for arithmetic schemes,
this is usually integer addition and multiplication; for boolean schemes, this is a small fixed set of
boolean gates.
Furthermore, FHE is slow. Even in state-of-the-art FHE implementations, the cryptographic

overhead of a single homomorphic operation can be multiple orders of magnitude greater than
that of performing the same operation over unencrypted values. Naïvely translating a plaintext
function into its ciphertext equivalent can produce circuits that are too expensive to evaluate on any
nontrivial inputs. Correctly mapping a computation down into a set of homomorphic operations
Writing efficient FHE programs therefore requires a great deal of cryptographic expertise.

2.2 CGGI
This paper uses a scheme called CGGI [23], which supports encrypting 𝑛-bit integers for some small
𝑛 (usually 2 or 3). CGGI natively supports ciphertext addition and scaling ciphertexts by a known
plaintext constant. Unlike many of its FHE counterparts, however, it also supports a technique
called programmable bootstrapping. Unlike a traditional bootstrap, which resets the noise values in a
batch of ciphertexts without changing the underlying encrypted values, a programmable bootstrap
can only operate on one ciphertext at a time, but additionally evaluates an arbitrary unary function
(usually represented as a 2𝑛-row lookup table) on the encrypted value.

In most implementations of CGGI, these lookup tables are used to capture classic Boolean truth
tables: the 2𝑛-row lookup table can represent a truth table with 𝑛 inputs. In other words, these
lookup tables are abstracted as 𝑛-input Boolean gates, with ciphertext inputs treated as bits.

The key observation of this paper is that while this abstraction facilitates easy circuit construction
(as various Boolean circuit optimization techniques can be applied), it undersells the flexibility of



4 Raghav Malik, Vedant Paranjape, and Milind Kulkarni

CGGI’s lookup tables. In actuality, ciphertexts in CGGI are encryptions of integers mod 𝑝 , where
𝑝 is the size of the lookup table, and the lookup tables index the result of linear combinations of
the ciphertext inputs. (Section 4.1 provides a more formal treatment of this fact.) It is precisely by
exploiting this additional flexibility that COATL is able to build more complex lookup tables and
create smaller circuits, as we describe next.

2.3 HEIR
MLIR[20] is a compiler infrastructure that aims to simplify the process of writing domain-specific
compilers. It allows compiler authors to define “dialects” of custom IR operations, and easily
implement “passes” that transform code between these dialects. HEIR[11] is a fork of MLIR that
adds a number of FHE-specific dialects and passes, such as a generic secret dialect for representing
arbitrary homomorphic computation, and several scheme-specific dialects including one for CGGI.
HEIR also implements several passes for lowering programs written using the secret dialect into
scheme-specific operations and generating code for a target FHE implementation. We implement
the ideas in this paper on top of the HEIR infrastructure, and in particular, on top of an existing
pipeline of passes that transform secret code into circuits built out of 2- to 3-input Boolean gates,
lower these gates into CGGI operations, and then generate code for the OpenFHE library [3].
This pipeline performs some optimizations on the Boolean circuit before lowering to CGGI, but
these optimizations stay in the realm of Boolean gates, and do not take advantage of any of the
CGGI-specific techniques we discuss here.

3 OVERVIEW
The basic unit of computation in CGGI is the eight-row1 lookup table (LUT): A table of possible
outputs is used to represent a simple function, and the inputs are combined and used to index into
this table. The output can then be used as the input to another table; by combining LUTs in this
manner, we can compute more complex functions.

As mentioned in Section 2.2, CGGI programs are typically expressed as Boolean circuits where the
lookup tables correspond to Boolean gates. An eight-row LUT is enough to encode any three-input
Boolean gate, by indexing into the table with a three-bit integer comprised of the inputs to the
Boolean gate. However, as discussed in Section 2.2, 𝑝-row lookup tables work by computing a linear
combination of the inputs (in Z𝑝 ), and using the result to select the appropriate output. Thus, it is
often possible to represent much larger gates by exploiting the integer, rather than Boolean, nature
of the computation. For example, we can encode a 7-way AND by summing all the inputs into a
single integer between 0 and 7, and indexing into a table with a 1 only in the 7th row. Intuitively,
this encoding exploits the fact that the AND gate is invariant under permutations of its inputs,
obviating the need to perfectly distinguish each input, and instead only check whether all of the
inputs are 1.
COATL’s approach relies on the following insight: a Boolean function that is invariant under

symmetries of its inputs can often be “compressed” as above. This compression means that the
lookup tables can be used to encode gates with larger fan-ins, resulting in circuits that use fewer
gates overall. We call these more general LUTs arithmetic lookup tables, since they are allowed to
compute arbitrary linear combinations on their inputs before indexing, unlike traditional CGGI
LUTs which always use power-of-two coefficients.

1The standard set of encryption parameters in the literature yield eight-row lookup tables [23], though bigger tables are
achievable via significantly more expensive parameters. This paper continues with the convention of eight-row lookup
tables, but its ideas are applicable to other parameter sets and table sizes as well.



Circuit Optimization Using Arithmetic Table Lookups 5

Fig. 2. Overview of boolean FHE workflow. The red highlight denotes COATL’s workflow

In this section, we first describe at a high level the usual workflow for compiling Boolean FHE
programs, and then give an overview of the compilation strategy COATL uses for generating
circuits with arithmetic LUTs. This consists of two “standard” phases that COATL implements
(Booleanization and Lowering) and a newMerging phase that compresses the circuit using arithmetic
LUTs. These workflows are illustrated in Figure 2.

3.1 Compiling Boolean FHE
A common strategy for compiling Boolean FHE programs—for example, as implemented in HEIR
and the TFHE Transpiler [11, 17]—consists of two phases: Booleanization, and Lowering. COATL
uses these phases as well, so we discuss each of them at a high level, using the snippet in Figure 3a,
which adds two encrypted 8-bit integers, as a running example. Note that for readability, Figure 3
(and the other code snippets in this paper) are presented using a simplified syntax that nevertheless
corresponds structurally to the actual frontend MLIR we use (see Section 5). In particular, homo-
morphic operations are wrapped in a secret block that explicitly captures ciphertext variables,
operates on them as plaintexts, and “yields” the result back as a ciphertext.

Booleanization. The aim of Booleanization is to convert a high-level program into a Boolean circuit.
This transformation preserves high-level plaintext control-flow such as conditional branches
and loops, but converts ciphertext-dependent branches into multiplexed circuits, as is standard
[1, 17, 25]2. Within each (plaintext-dependent) basic block, all encrypted integers are turned into
arrays of encrypted bits, and all supported3 operations are converted to their fixed-bitwidth Boolean
counterparts. Finally, we invoke Yosys [30], an open-source circuit synthesis suite, which performs
some standard circuit optimizations on each basic block and synthesizes an equivalent circuit built
out of 3-input lookup tables4. Figure 3b shows the results of Booleanizing the add_ints function.
Note that the encrypted integral datatype (enc<i8>) is implicitly converted to an array of encrypted
bits (enc<i1>[8]), and the integer addition is converted into a sequence of bitwise operations: v0
computes the XOR of x[0] and y[0], v1 computes the carry-out, and v2 computes a three-way
XOR between the carry-in, x[1], and y[1].

Lowering. The lowering pass converts an optimized boolean circuit represented via lookup tables
into C++ code that invokes cryptographic primitives in our chosen FHE backend, OpenFHE [3].
Similar to Booleanization, this pass preserves all the control flow present in the original circuit,

2By default, we choose not to fully unroll every loop with plaintext bounds, as this can sometimes result in very large
circuits. However, the programmer can, to some extent, control whether specific loops get unrolled (see Section 5.1).
3Currently, the set of supported operations includes integer addition, subtraction, multiplication, common bitwise operations,
and comparison.
4Yosys is also capable of instead synthesizing the circuit out of standard Boolean logic gates such as AND/OR/XOR/NOT.
This usually results in larger circuits with more gates, and therefore worse performance.



6 Raghav Malik, Vedant Paranjape, and Milind Kulkarni

fn add_ints(x: enc<i8>, y: enc<i8>) -> enc<i8>
{

let z: enc<i8> = secret(x: i8, y: i8) -> i8 {
yield x + y;

};
return z;

}

(a) High-level source

fn add_ints(x: enc<i1>[8], y: enc<i1>[8]) -> enc<i1>[8]
{

let z: enc<i1>[8] = secret(x: i1[8], y: i1[8]) {
let result: i1[8];
// v0 = x[0] XOR y[0]
let v0: i1 = lut(x[0], y[0], 0b0110);
// v1 = x[0] AND y[0]
let v1: i1 = lut(x[0], y[0], 0b1000);
// v2 = x[1] XOR y[1] XOR v1
let v2: i1 = lut(x[1], y[1], v1, 0b10010110);
...
result[0] = v0;
result[1] = v2;
...
yield result;

};
return z;

}

(b) After booleanizing

fn add_ints(cc: openfhe.BinContext,
x: openfhe.ctxt[8],
y: openfhe.ctxt[8]) -> openfhe.ctxt[8]

{
result: openfhe.ctxt[8];
let v0: openfhe.lut = cc.make_lut(6);
let v1: openfhe.ctxt = cc.mul_const(x[0], 2);
let v2: openfhe.ctxt = cc.add(y[0], v1);
let v3: openfhe.ctxt = cc.eval_lut(v2, v0);
...
result[0] = v3;
...
return result;

}

(c) Lowered to OpenFHE

Fig. 3. Adding two encrypted 8-bit integers



Circuit Optimization Using Arithmetic Table Lookups 7

so the generated C++ may contain branches on plaintext values and loops with plaintext bounds.
Figure 3c shows the results of lowering the Booleanized add_ints function. Note that a single lut
operation gets lowered into a sequence of cryptographic primitives that:

(1) Build the lookup table for bootstrapping
(2) Prepare the input to the lookup table by computing x[0] * 2 + y[0]
(3) Evaluate the lookup table to bootstrap the input and compute the XOR

3.2 Optimizing Circuits with COATL
As depicted by the red highlight in Figure 2, COATL adds a Merging pass to its otherwise

standard Boolean FHE compilation pipeline. The goal of this pass is to reduce the total number
of lookup tables in the circuit by finding dependent sequences of gates that can be replaced by a
single gate with a higher fan-in. If the resulting fan-in is greater than 3, this pass is also responsible
for determining the appropriate linear combination to apply to the inputs before indexing into the
new lookup table. We save the details of how sequences of gates are identified to be merged, and
how the appropriate linear combinations are determined, for Section 4.

In the example in Figure 3b, this pass recognizes that the two gates that compute v1 and v2 can
be replaced by a single gate that operates on x[0], y[0], x[1], y[1] and directly produces v2,
as shown in Figure 4a. This process is also shown pictorially in Figure 5. In the example, since
v1 has no more uses after merging, it is safe to delete, and hence the total number of gates in the
circuit decreases. Section 4 more carefully addresses the general case.

4 DESIGN
The primary motivation behind the optimizations COATL does is to produce circuits with fewer
gates5 that each implement more complex logic. At a high level COATL does so by identifying
sequences of computations that can be “merged” into a single gate. The gates that result from
merging generally have higher fan-ins, since they compute functions over more inputs simultane-
ously. A priori, a boolean gate with 𝑁 inputs requires a truth table with 2𝑁 rows, with one row for
every possible input configuration. The size of CGGI lookup tables is constrained by the encryption
parameters used; our default parameter set yields 8-row (𝑁 = 3) lookup tables. This presents a
problem: How do we encode a gate with more than three inputs using a fixed-size lookup table?

4.1 Arithmetic LUT Formalism
In this section, we develop the notion of an arithmetic lookup table (introduced informally in
Section 3) to help answer the question above, and give some basic formalisms.

An 𝑅-row, 𝑛-input arithmetic lookup table consists of the following data:
• A sequence of 𝑅 boolean outputs: y = (𝑦0, . . . , 𝑦𝑅−1)
• A sequence of 𝑛 integer coefficients: a = (𝑎0, . . . , 𝑎𝑛−1)

where the coefficients are used to map configurations of 𝑛 inputs (𝑥0, . . . , 𝑥𝑛−1) to one of the outputs
by first computing the index:

𝑘 =

(∑︁
𝑖

𝑎𝑖𝑥𝑖

)
mod 𝑅

and then returning the corresponding output 𝑦𝑘 . Arithmetic LUTs strictly generalize the notion of
truth tables for boolean gates, like the 3-way OR shown in Figure 6a: Any truth table can be modeled

5We distinguish between gates, which are abstract units of computation that represent specific functions, and (arithmetic)
lookup tables (or arithmetic LUTs), which are concrete implementations of gates as described in Section 4.1. Similarly, we



8 Raghav Malik, Vedant Paranjape, and Milind Kulkarni

fn add_ints(x: enc<i1>[8], y: enc<i1>[8]) -> enc<i1>[8]
{

let z: enc<i1>[8] = secret(x: i1[8], y: i1[8]) {
let result: i1[8];
let v0: i1 = arith_lut(

inputs={x[0], y[0]},
coeffs={2, 1}, lut=0b0110);

let v2: i1 = arith_lut(
inputs={x[1], y[1], x[0], y[0]},
coeffs={2, 2, 1, 1}, lut=0b01001100);

...
result[0] = v0;
result[1] = v2;
...
yield result;

};
return z;

}

(a) The result of merging v1 and v2

fn add_ints(cc: openfhe.BinContext,
x: openfhe.ctxt[8],
y: openfhe.ctxt[8]) -> openfhe.ctxt[8]

{
result: openfhe.ctxt[8];
...
let v4: openfhe.lut = cc.make_lut(76);
let v5: openfhe.ctxt = cc.add(x[1], y[1]);
let v6: openfhe.ctxt = cc.mul_const(v5, 2);
let v7: openfhe.ctxt = cc.add(x[0], y[0]);
let v8: openfhe.ctxt = cc.add(v2, v3);
let v9: openfhe.ctxt = cc.eval_lut(v8, v4);
...
result[1] = v9;
...
return result;

}

(b) Lowering arithmetic LUTs

Fig. 4. Applying COATL to the booleanized circuit in Figure 3b

as an arithmetic LUT with the same outputs, and the coefficient sequence a =
(
2𝑛−1, 2𝑛−2, . . . , 21, 20

)
.

In fact, recall from Section 2.2 that this is exactly how the CGGI scheme encodes boolean gates!
The expressivity of arithmetic LUTs, however, comes from the ability to choose non-power-of-two
coefficients. For example, notice that we can express the same 3-way OR with only four outputs

distinguish between inputs (the formal parameters to a gate) and input configurations (the sequence of boolean values used
in a particular invocation). We use the term truth table to refer to a lookup table with power-of-two coefficients.



Circuit Optimization Using Arithmetic Table Lookups 9

(a) Schematic of Figure 3c (b) Schematic of Figure 4b

Fig. 5. COATL merges the AND with the XOR3 to produce a smaller circuit

𝑥 𝑦 𝑧 𝑥 ∨ 𝑦 ∨ 𝑧
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

(a) 3-way OR truth table

𝑥 𝑦 𝑧 𝑘 = 𝑥 + 𝑦 + 𝑧
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 2
1 0 0 1
1 0 1 2
1 1 0 2
1 1 1 3

↦→

𝑘 𝑦𝑘
0 0
1 1
2 1
3 1

(b) Encoding a 3-way OR into a four-output arithmetic
LUT

Fig. 6. Truth tables can be modeled using arithmetic LUTs

instead of eight, by setting a = (1, 1, 1) and y = (0, 1, 1, 1) as in Figure 6b. In other words, by
cleverly choosing appropriate coefficients, we “compress” the original truth table into fewer rows!
This presents a possible solution to the problem posed at the beginning of the section: if a high
fan-in merged gate can be expressed as an 8-row arithmetic LUT, we can map it down into CGGI
operations.
For a more complex example, consider the truth table in Figure 7 that implements the boolean

function “𝑥0∧𝑥1 =⇒ 𝑥2”. Compressing this into a four-row arithmetic LUT requires (1) partitioning
the input configurations of the original truth table, and (2) finding the coefficients for a linear
combination that perfectly distinguishes the partitions. More precisely:

(1) Any two input configurations in the same partition must also correspond to the same output
(2) Applying the linear combination to two input configurations in the same partition should

yield the same index
(3) Applying the linear combination to two input configurations in different partitions should

yield different indices.
(Note that the second and third conditions mean that we could alternatively think of the coefficients
as determining a partition, where two configurations are in the same partition if their linear
combinations are the same.) The highlighted rows in Figure 7 show one such partition, and the
corresponding linear combination 𝑥0 + 𝑥1 + 3𝑥2. Intuitively, this “partitioning-via-compression”
strategy works by exploiting symmetries. Note that the function is symmetric in its first two inputs:



10 Raghav Malik, Vedant Paranjape, and Milind Kulkarni

𝑥0 𝑥1 𝑥2 𝑥0 ∧ 𝑥1 =⇒ 𝑥2
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

↦→

𝑥0 𝑥1 𝑥2 𝑘 = 𝑥0 + 𝑥1 + 3𝑥2
0 0 0 0
0 0 1 3
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 2
1 1 1 1

↦→

𝑘 𝑦𝑘
0 1
1 1
2 0
3 1

Fig. 7. A truth table can be mapped into a smaller arithmetic LUT by partitioning its rows, and then finding
a linear combination that distinguishes the partitions

(a) A dependent pair of gates that can be merged (b) After merging the dependent pair

Fig. 8. Merging can yield circuits with fewer gates

Since we cannot distinguish between (𝑥0, 𝑥1, 𝑥2) and (𝑥1, 𝑥0, 𝑥2) we can, for example, place the
configurations (0, 1, 1) and (1, 0, 1) in the same partition, and map them to the same output row.
More generally, any set of indistinguishable input configurations can be mapped to the same output row
of an arithmetic LUT, and consequently, highly symmetric gates are more likely to be compressible.

Note that while this example compresses an 8-row truth table into a 4-row arithmetic LUT, with
the default parameters COATL can support arithmetic LUTs with up to 8 rows, and can compress
functions with up to 7 inputs (i.e. truth tables with up to 128 rows, though not all such truth tables
can be compressed). With more inputs per LUT, each arithmetic LUT can compute more complex
functions, and result in fewer LUTs in the overall circuit.

4.2 Building Lookup Tables
We can map large truth tables into arithmetic LUTs that fit CGGI’s parameters, but how do we
actually use these LUTs to compute complex functions? Rather than synthesizing arithmetic LUT
circuits from the ground up, COATL makes use of existing infrastructure that maps functions into
circuits built out of traditional boolean gates [11, 12, 30], and then finds and merges dependent
pairs of gates (in which one gate produces an output consumed by another gate, like 𝐴 and 𝐶 in
Figure 8a). Consider the example circuit in Figure 8. Merging𝐴 and𝐶 naïvely produces a four-input
gate, but if this merged gate can be compressed into an 8-row arithmetic LUT (as described in
Section 4.1), then we can represent the same circuit with only two gates instead of three, as shown
in Figure 8b. The remainder of this section describes the procedure for merging a dependent gate
pair, and then synthesizing an arithmetic LUT that encodes the merged gate. Section 4.3 discusses
how COATL actually identifies pairs to merge.



Circuit Optimization Using Arithmetic Table Lookups 11

Algorithm 1:Merging gates into an arithmetic LUT
Algorithm BuildLUT(g1, g2)

dedupInputs← Canonicalize(g1, g2);
ones, zeros← Enumerate(g1, g2, dedupInputs);
variables← {𝑎𝑖 : 𝑖 ∈ inputs};
constraints← {−𝑅 < 𝑎𝑖 < 𝑅 : 𝑎𝑖 ∈ variables};
for o← ones do

for z← zeros do
constraints.add(

∑
𝑎𝑖𝑜𝑖 ≠

∑
𝑎𝑖𝑧𝑖 (mod 𝑅));

for o← ones do
constraints.add(−𝑅 <

∑
𝑎𝑖𝑜𝑖 < 𝑅);

for z← zeros do
constraints.add(−𝑅 <

∑
𝑎𝑖𝑧𝑖 < 𝑅);

if coefficients← ILPSolve(constraints, variables) then
return coefficients;

return error ;

Given a pair of gates 𝑦𝑘 = 𝑔1 (𝑥1, . . . , 𝑥𝑛) and 𝑧 = 𝑔2 (𝑦1, . . . , 𝑦𝑚) in which the output 𝑦𝑘 of 𝑔1
appears as one of the inputs to 𝑔2, we want to generate a single (merged) gate that computes
𝑧 = 𝑔1,2 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑘 , . . . , 𝑦𝑚) (where 𝑦𝑘 means that 𝑦𝑘 is omitted from the list of inputs). A
priori, the combined gate has 𝑛 +𝑚 − 1 inputs and therefore requires a lookup table with 2𝑛+𝑚−1
rows to express all possible configurations. Recall from the discussion at the beginning of this
section, however, that except for very small values of𝑚 and 𝑛, such a lookup table is rarely directly
expressible with a reasonable set of cryptographic parameters; we need to compress it into an arith-
metic LUT with fewer rows. We break the compression process into three steps: canonicalization,
enumeration, and coefficient synthesis, described below. Algorithm 1 shows pseudocode for each
step.

Canonicalization. Consider the gates 𝑐 = 𝑔1 (𝑎, 𝑏) and 𝑒 = 𝑔2 (𝑎, 𝑐, 𝑑). Naïvely merging these gives
𝑒 = 𝑔1,2 (𝑎, 𝑎, 𝑏, 𝑑) which requires a table with 24 = 16 rows. However, since the first two inputs are
always identical, the lookup table does not need a row corresponding to, e.g., (1, 0, 0, 0). We avoid
using these extra rows by “deduplicating” the set of inputs to produce the smaller 𝑒 = 𝑔1,2 (𝑎, 𝑏, 𝑑).
Note that the deduplicated gate explicitly precludes trying to synthesize coefficients that can
distinguish between these impossible configurations, thus simplifying the synthesis problem and
maximizing the likelihood that synthesis succeeds.

Enumeration. We start by simulating the two gates being merged on all possible configurations to
produce a set of 2𝑛+𝑚−1 input/output pairs (or fewer, if some inputs were removed in the preceding
step), and then we group the configurations based on their corresponding output (either a 0 or a 1).
This gives a very coarse partition, which will be refined by the synthesized coefficients in the next
step.

Coefficient Synthesis. We query an ILP solver [26] for a sequence of coefficients that determine a
partition which (1) refines the coarse partition from the previous step, and (2) maps into the correct
number of rows. The ILP problem is formulated as follows:



12 Raghav Malik, Vedant Paranjape, and Milind Kulkarni

(a) Before (b) After

Fig. 9. Merging a gate with multiple only shrinks the circuit if all consumers are merged

• Integer variables are created to represent the coefficients for each of the 𝑛 +𝑚 − 1 inputs
• Each coefficient is constrained to be within the range (−𝑅, 𝑅), where 𝑅 is the configured
number of rows
• For each configuration, the associated linear combination of the coefficients is constrained

to be within the range (−𝑅, 𝑅), ensuring that each configuration maps to a valid row in an
𝑅-row lookup table
• For each pair of configurations with different outputs, the associated linear combinations of

coefficients are constrained to be different mod 𝑅, ensuring that each row of the compressed
lookup table can map to a well-defined output (note that this condition can equivalently be
expressed as “two input configurations in the same partition map to the same output”)

The solver is configured with a 500 millisecond time limit6; if it fails to find a sequence of coefficients
within this limit, the two original LUTs are marked as unmergeable. If the solver succeeds, the
coefficients are directly used to construct the compressed lookup table as shown in Figure 4a. To
reduce the number of expensive solver calls we make, results are cached using the rows of the
uncompressed LUT as a key.

4.3 Finding Gates to Merge
Now that we have a mechanism for merging gates to create more complex arithmetic LUTs, we
must design a policy that identifies which gates to merge. We begin this discussion by restating
two important observations made earlier:

(1) Merging two gates is only possible if the merged gate can be expressed in a fixed-size lookup
table (i.e. by exploiting symmetries in the inputs). Thus, intuitively, two gates that compute
“simple” functions are easier to merge than two gates that compute “complex” functions.

(2) After merging two gates (a “producer” and a “consumer”), the producer is safe to delete only
if it has no other uses remaining. Thus, a merge is “profitable” if and only if the producer
can be successfully merged into all of its consumers. For example, in Figure 9, if 𝐴 and 𝐶
cannot be merged there is no point in merging 𝐴 and 𝐵. Note that the CGGI semantics and
cost model (Section 2) mean that the benefits of a merge do not depend on the actual gates
being merged, except insofar as they are mergeable.

COATL uses a search heuristic that attempts to maximize the number of “mergeable” gates at
every iteration, where a gate is considered mergeable if it can be successfully merged with all of its
consumers (and consequently deleted after merging). Because actually attempting to perform a
merge involves an expensive call to an ILP solver (see Section 4.2), we instead use a “complexity

6This time limit is safe to set: a spurious UNSAT result affects the efficiency, but not the correctness, of the generated code.
None of our benchmarks run into the 500 ms limit.



Circuit Optimization Using Arithmetic Table Lookups 13

Algorithm 2:Merging gates in a boolean circuit
Algorithm MergeGates(circuit)

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← {𝑔 ∈ 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 .𝑔𝑎𝑡𝑒𝑠 : Consumers(g) ⊆ 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 .𝑔𝑎𝑡𝑒𝑠};
while 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ≠ ∅ do

𝑛𝑒𝑥𝑡 ← argmin𝑔∈𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 IncreaseInComplexity(g);
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 \ {𝑛𝑒𝑥𝑡};
𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑢𝑡𝑠 ← ∅;
for 𝑐 ← Consumers(next) do

𝑙𝑢𝑡 ← BuildLUT(next, c);
if 𝑙𝑢𝑡 = error then

Go to next candidate;
𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑢𝑡𝑠.𝑎𝑑𝑑 (𝑙𝑢𝑡);

PerformMerge(𝑛𝑒𝑥𝑡 , Consumers(𝑛𝑒𝑥𝑡),𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑢𝑡𝑠);

Procedure IncreaseInComplexity(gate, consumers)
𝑜𝑙𝑑 ← ∑

𝑐∈𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑠 Complexity(c.inputs);
𝑛𝑒𝑤 ← ∑

𝑐∈𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑠 Complexity(𝑐.𝑖𝑛𝑝𝑢𝑡𝑠 \ 𝑔𝑎𝑡𝑒.𝑜𝑢𝑡𝑝𝑢𝑡 ∪ 𝑔𝑎𝑡𝑒.𝑖𝑛𝑝𝑢𝑡𝑠);
return 𝑛𝑒𝑤 − 𝑜𝑙𝑑

score” based on input arity as a proxy7: intuitively, the fewer inputs a gate has, the more likely it
is to be expressible as a LUT. In each iteration, COATL first builds a set of candidates consisting
of gates whose outputs are only consumed by other gates (and thus can be merged and then
deleted). It then iterates over the candidate set to find the gate that minimizes the overall increase
in complexity after merging with all its consumers, and then attempts to perform all the merges.
If any of the merges are unsuccessful, they are all rolled back and the gate is removed from the
candidate set for the next iteration. Pseudocode for this procedure is shown in Algorithm 2. Note
that the CanBuildLUT procedure call implements the steps described in Section 4.2 (in particular,
the call to the ILP solver), and PerformMerge actually updates all the consumers and deletes the
now-unused producer.

5 IMPLEMENTATION
COATL is implemented on top of HEIR[11], an MLIR fork that adds various FHE-specific dialects
and passes. The core of the implementation is a single merge-luts pass that performs the iterative
search-and-merge transforms laid out in Section 4. This section discusses details of the rest of
the implementation; in particular, we describe how we deal with unrolling loops, and our code
generation strategy.

5.1 Unrolling Secret Loops
Recall from Section 3.1 that while COATL supports programs with plaintext-dependent control
flow, booleanization happens at the level of basic blocks, since boolean circuits do not have a notion
of branching-looping control flow. The programming model for HEIR involves enclosing regions
of computation inside secret blocks to indicate that the operations therein must be booleanized;

7In our implementation, gates with between 0 and 3 inputs are “free”, since they can trivially be expressed with an 8-row table.
Gates with up to 5 inputs contribute 1 point to the complexity score, and gates with more than 5 inputs contribute 2 points.



14 Raghav Malik, Vedant Paranjape, and Milind Kulkarni

fn sum(nums: enc<i8>[10]) -> enc<i8> {
let mut acc: enc<i8> = nums[0];
for (u32 i = 1; i < 10; i++) {

acc = secret(nums: i8[10]) {
let new_acc: i8 = acc + nums[i];
yield new_acc;

};
}
return acc;

}

(a) Loop is not unrolled

fn sum(nums: enc<i8>[10]) -> enc<i8> {
let ans: enc<i8> = secret(nums: i8[10]) {

let mut acc: i8 = nums[0];
for (u32 i = 1; i < 10; i++) {

acc = acc + nums[i];
}
yield acc;

};
return ans;

}

(b) Loop is unrolled

Fig. 10. By changing the placement of the secret block, the programmer can control whether or not the
loop gets unrolled.

thus, a secret block cannot contain loops. We implement a pass which runs before booleanization
and ensures this is true by fully unrolling all loops contained inside secret blocks.
Note that by carefully placing secret blocks, the programmer can control which loops get

unrolled: Compare the snippets in Figure 10: by placing the secret block inside the loop body in
Figure 10a, the programmer ensures that each iteration of the loop is booleanized separately, and
the loop appears in the final generated code. By contrast, since the secret block wraps the entire
loop in Figure 10b, it is fully unrolled and booleanized into a single circuit that computes every
iteration8.

5.2 OpenFHE Code Generation
COATL targets the OpenFHE [3] backend, a C++ library containing an efficient implementation
of the CGGI scheme. Merged lookup tables are converted into OpenFHE-specific code by first
translating each lookup table into its associated CGGI operations, and then lowering these opera-
tions to HEIR’s OpenFHE dialect. Multidimensional arrays are quite common in the final OpenFHE
IR (for instance, encrypted integers are translated into arrays of encrypted bits, and arrays of
integers therefore become two-dimensional arrays), so the lowering often produces high-level array
operations that use broadcasting semantics. We manually implement these broadcast semantics,
8We prepared an experiment to investigate the effects of different unrolling choices on efficiency, but the rolled-loop
benchmark triggered an unrelated bug in the HEIR pipeline which prevented us from running it.



Circuit Optimization Using Arithmetic Table Lookups 15

and map these high-level operations to our implementation when emitting C++ code. We choose to
not directly handle details like encryption and decryption, parameter selection, or key generation:
Instead, we simply generate a library that provides efficient implementations of each function
found in the original HEIR. The programmer must then write a “harness” that correctly sets up a
cryptographic context, encrypts the inputs, and then calls the functions provided by this library.

6 EVALUATION
In this section, we evaluate the effectiveness of COATL. Specifically, we aim to answer the following
research questions:

• RQ1: How do the transformations performed by COATL affect the efficiency of
generated code?We compile a number of benchmarks with both COATL and a baseline
compiler which does not include the COATL transformations, and compare the run times
of the generated code.
• RQ2: What impact does COATL have on compilation time? We measure the time
taken to compile each benchmark with and without the COATL pass.
• RQ3: How well does COATL scale to larger input sizes? We vary the bitwidths and
input sizes of our benchmarks, and assess the impact this has on our speedups over the
baseline.

All experiments are performed on a server with AMD Ryzen Threadripper Processor (128 threads)
clocked at 2.9 GHz with 252 GB of RAM. To run the benchmark binaries we used numactl to isolate
runs on a single core with memory allocation restricted to the same NUMA node.

6.1 How efficient are the programs COATL generates compared to the baseline
generated code?

To assesses the performance impact of optimizations that COATL does, we run it on a suite of
benchmarks and compare the run time of the optimized circuits with the unoptimized circuits. We
do thirty iterations of each benchmark and report the median and speedup of the runtime. For
these runs the ILP solver timeout is set to 500 milliseconds. Because there is no standard set of
binary FHE benchmarks, we implement several classic arithmetic logic circuits (ADD, MUL) at
different bit-widths as well as various algorithms that appear in MPC literature (PIR, PSI) [4–6, 8, 9]
at different input sizes:

We evaluate COATL on the following set of benchmarks:

• ADD: A classic boolean addition circuit that adds two integers using a carry-lookahead
adder. We evaluate 8-, 16-, and 32-bit adders.
• MUL: A circuit to multiply two integers represented as booleans. We evaluate 8-, 16-, and
32-bit multipliers.
• PIR: Private information retrieval. A classic MPC algorithm that determines whether a
(secret) key exists in a set. We evaluate retrieval from 8-way sets.
• PSI: Private set intersection. A classic MPC algorithm that computes the intersection of two
(secret) sets. Our implementation intersects sets of cardinality 8 and 16, consisting of 8-bit
and 16-bit integers, respectively.

Each benchmark is written in MLIR’s secret dialect, and lowered to OpenFHE C++ code using
HEIR’s optimizer tool (opt); The lowered OpenFHE C++ code is then compiled and benchmarked.
We compare the run times of COATL- and baseline-generated code in Figure 11. The run time
numbers are plotted normalised to the baseline; the absolute run time numbers and the relative
speedup is listed in Table 1.



16 Raghav Malik, Vedant Paranjape, and Milind Kulkarni

add8 add16 add32 mul8 mul16 mul32 psi8 psi16 pir
Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ru

nt
im

e 
(N

or
m

al
ize

d)
Unoptimized (baseline) Optimized (COATL)

Fig. 11. Baseline vs COATL run times, normalized to baseline. 95% confidence intervals are plotted on the bar
graph, but they are miniscule.

Table 1. Runtime statistics of the optimized vs unoptimized benchmarks

Benchmark Baseline Run Time (ms) COATL Run Time (ms) Speedup
add8 331 264 1.25×
add16 684 551 1.24×
add32 1390 1100 1.26×
mul8 1920 1370 1.4×
mul16 8830 6670 1.32×
mul32 35800 27900 1.28×
psi8 25600 18500 1.38×
psi16 244000 187000 1.3×
pir 3960 2620 1.51×

We see that COATL consistently produces more efficient circuits than the baseline HEIR compiler,
with speedups ranging from 1.24× to 1.51×. Note that the HEIR implementation already represents
an optimized baseline, as the yosys circuit optimizer merges gates—but only using traditional
Boolean lookup tables.
We note that COATL’s move to arithmetic lookup tables instead of Boolean lookup tables does

not result in gates that are more expensive to evaluate. Recall that HEIR’s Boolean LUTs still use
the same mathematical mechanism as COATL’s arithmetic LUTs, but with fixed coefficients. We
can see this effect by considering the circuit size of our benchmarks, as shown in Table 2. We see
that the reduction in gates that COATL achieves is strongly correlated with the improvements in
runtime.



Circuit Optimization Using Arithmetic Table Lookups 17

Table 2. Gates in the unoptimized vs optimized benchmarks

Benchmark Baseline gate count COATL gate count
add8 15 11
add16 31 24
add32 63 50
mul8 87 62
mul16 401 303
mul32 1627 1260
psi8 138 98
psi16 678 526
pir 180 121

6.2 What is the compile time impact of doing the COATL optimization?
Generating optimal code comes with the cost of blow up in the compilation time. Here we compare
the compile time of benchmarks and evaluate the time taken by each step as a whole. We use
optimization pass time statistics generated by HEIR’s optimizer tool (opt), which provides compile
time information at the granularity of single optimization pass. After opt lowers the MLIR to
OpenFHE code, we compile it to binaries. The time taken for compiling OpenFHE code is reported
as well. For building the binaries we use the same machine and run GNU make with 128 threads.

Table 3. Compile time statistics (in seconds) of unoptimized vs optimized benchmarks. Note that the reported
HEIR+COATL time includes solver time

Benchmark Baseline compilation time (s) COATL compilation time (s)
HEIR OpenFHE Total Solver HEIR+COATL OpenFHE Total

add8 1 3.45 4.45 6 6 3.4 9.4
add16 1 3.83 4.83 14 12.67 3.82 17.82
add32 1 5.16 6.16 26 25.33 5.26 31.26
mul8 1 5.45 6.45 40 39.03 5.32 45.32
mul16 3 34.08 37.08 218 215.45 34.08 252.08
mul32 13 2177 2190 1311 1298 2054 3365
psi8 4 10.6 14.6 47 42.98 9.87 56.87
psi16 22 1301 1323 191 169.27 1186.56 1377.56
pir 2 12.2 14.2 118 116.11 10.61 128.61

Table 3 shows the results. We note a few things. First, we see that across most benchmarks,
the time of COATL’s optimization pass is dominated by time spent in the ILP solver to determine
whether a merge candidate is valid. Second, we see that while COATL time can often be significant,
for larger benchmarks (e.g., PSI), compilation time is dominated by the basic process of compiling
the resulting circuit, rather than optimization time. Third, for some of the larger benchmarks like
psi16 and mul32, the compilation time for compiling the resulting circuit was reduced significantly.
This is mainly due to the fact that COATL generates optimized boolean circuits as compared to the
baseline.



18 Raghav Malik, Vedant Paranjape, and Milind Kulkarni

6.3 How well does the COATL optimization scale to increasing input size?
To evaluate how well the optimization scales to different input sizes, we look at the speedup data in
Table 1. The ADD and MUL suite of benchmarks have implemented programs with 8-, 16-, 32-bit
input sizes, and the PSI suite has programs with 8-, 16-bit input sizes. As we can see from the data
in Table 1, the speedup remains fairly consistent for all the three input sizes for ADD, MUL and PSI
suites of benchmarks. In case of ADD, speed up for 8-bit is 1.25, for 16-bit it is 1.24 and for 32-bit it
is 1.26. We can roughly say that the speedup stays consistent. But in the case of MUL and PSI, the
speedup goes down as we increase the input size. This is due to the higher program complexity of
MUL and PSI as compared to ADD.

6.4 Impact of solver timeout on performance and compile time
The HEIR compiler framework ships with a solver [26] which we use to solve the ILP problem
described in Section 4.2. We profiled the compile time of the optimization pass and the solver takes
the majority percentage of the compile time as shown in Table 3. As a result the compile time
impact of COATL increases considerably. The solver can timeout after a specified time limit if it
does not find a solution. For the evaluations in Section 6.1 we set the timeout to 500 milliseconds.
This timeout is sufficient to avoid missing any optimization opportunities—experimenting with
larger timeouts does not produce more-optimized circuits.

7 RELATEDWORK
We discuss how COATL relates to other FHE compilers, and to existing circuit optimization
techniques.

7.1 FHE Compilers
A large body of work exists in making compilers for FHE [2, 7, 13, 14, 17–19, 22, 28, 31]. Most of
these compilers target arithmetic FHE schemes, in which the ciphertexts are encryptions of integers
modulo some prime 𝑝 , and the primitive operations are addition andmultiplicationmodulo 𝑝 . While
arithmetic schemes often have a much lower latency per homomorphic operation and support
optimizations such as vectorization, they require more careful ciphertext management, and their
inability to compute non-polynomial functions such as comparison make them unsuitable for many
applications. In contrast, by targeting a boolean scheme such as CGGI, COATL is able to easily
handle a much more general class of programs.

Two of these compilers (Concrete[31], and Google’s TFHE Transpiler [17]) instead target boolean
schemes, and we discuss them more carefully here. Concrete builds a computation graph from a
program written in its Python DSL, and generates code for TFHE [10], a library that implements
a boolean FHE scheme similar to CGGI. Concrete performs a number of optimizations on the
computation graph, but all of these happen before booleanization, and are largely orthogonal to
the transformations presented here. In particular, Concrete’s compilation workflow also contains a
fusing pass, which identifies subcomputations that depend on a single ciphertext variable and fuses
them into single lookup tables (e.g. replacing a square followed by a sine with a single lookup table
that computes sin

(
𝑥2

)
) This fusion differs from COATL’s LUT merging in two key ways:

(1) LUT merging is not restricted to subcomputations with a single input
(2) By operating after booleanization, COATL merges at a finer granularity, and can merge

across operation boundaries.
The TFHE Transpiler operates very similarly to COATL: it starts by mapping a high-level program

into boolean gates, and then uses standard circuit synthesis techniques like XLS [12] to generate
an efficient circuit that can be lowered to TFHE. However, the circuits it synthesizes are restricted



Circuit Optimization Using Arithmetic Table Lookups 19

to use the fixed set of boolean gates that TFHE provides, and thus it does not take full advantage of
the power of programmable bootstrapping. In particular, the TFHE Transpiler toolchain is roughly
equivalent to what we use as a baseline in Section 6.
Gouert et al. [18] propose an Arctyrex, an FHE compiler that also compiles a high level C-like

language to boolean FHE. Arctyrex targets a custom implementation of the CGGI scheme designed
for GPUs, and does some work to efficiently schedule computations across multiple GPUs. However,
it performs very few optimizations on the actual boolean circuit; we expect the techniques presented
in this paper to be largely orthogonal to their contributions.

7.2 Circuit Optimization
On the surface, COATL’s goals seem similar to existing (non-FHE) circuit optimization techniques,
since it attempts to minimize the number of gates in a boolean circuit [12, 24, 30]. However, these
techniques cannot, by themselves, capture the unique semantics of CGGI that we exploit here. In
particular, the notion of arithmetic LUT that we define here has no counterpart for traditional
boolean circuits, as it relies on the fact that CGGI ciphertexts encrypt integers mod p rather than
actual bits, and can therefore be scaled and added together as integers, rather than only combined
via power-of-two coefficients.

There is prior work in the space of performing FHE-specific circuit optimizations: Lee et al.
[21] show how to use circuit enumeration and program synthesis techniques to learn a set of
rewrite rules that can be automatically applied to FHE circuits. They obtain promising results from
feeding these rewrite rules into an e-graph [27, 29] and using it to apply local optimizations for,
e.g., reducing circuit depth. Unfortunately, their e-graph based approach does not directly work
for our use case. E-graphs excel at finding local rewrites; e.g., replacing a self-contained region of
gates with a single lookup table. However, recall from our discussion in Section 4.3 that at each
step, we have to perform several such replacements at once (i.e, a producer has to be merged into
all of its consumers); this nonlocal dependence makes it very difficult for an e-graph to reason about
individual rewrites.

8 CONCLUSION
This paper presents COATL, a Boolean FHE compiler that takes advantage of programmable
bootstrapping in the CGGI scheme. We develop the notion of an arithmetic lookup table, an
abstraction that more closely matches the computational model of CGGI, and demonstrate that
using this abstraction allows generating circuits that are smaller and more efficient. We demonstrate
on a variety of benchmarks that the circuits COATL produces outperform those produced by other
compilation strategies by up to 1.5×.



20 Raghav Malik, Vedant Paranjape, and Milind Kulkarni

REFERENCES
[1] Jayvant Anantpur and Govindarajan R. 2014. Taming Control Divergence in GPUs through Control Flow Linearization.

In Compiler Construction, Albert Cohen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 133–153.
[2] David W. Archer, José Manuel Calderón Trilla, Jason Dagit, Alex Malozemoff, Yuriy Polyakov, Kurt Rohloff, and Gerard

Ryan. 2019. RAMPARTS: A Programmer-Friendly System for Building Homomorphic Encryption Applications. In
Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography (London, United
Kingdom) (WAHC’19). Association for Computing Machinery, New York, NY, USA, 57–68. https://doi.org/10.1145/
3338469.3358945

[3] Ahmad Al Badawi, Andreea Alexandru, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja Erabelli, Nicholas
Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee, Zeyu Liu, Daniele Micciancio, Carlo Pascoe, Yuriy
Polyakov, Ian Quah, Saraswathy R.V., Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky, Matthew Triplett, Vinod
Vaikuntanathan, and Vincent Zucca. 2022. OpenFHE: Open-Source Fully Homomorphic Encryption Library. Cryptology
ePrint Archive, Paper 2022/915. https://eprint.iacr.org/2022/915 https://eprint.iacr.org/2022/915.

[4] Fattaneh Bayatbabolghani, Marina Blanton, Mehrdad Aliasgari, and Michael T. Goodrich. 2017. Secure Fingerprint
Alignment and Matching Protocols. CoRR abs/1702.03379 (2017). arXiv:1702.03379 http://arxiv.org/abs/1702.03379

[5] Marina Blanton, Ahreum Kang, and Chen Yuan. 2019. Improved Building Blocks for Secure Multi-Party Computation
based on Secret Sharing with Honest Majority. Cryptology ePrint Archive, Paper 2019/718. https://eprint.iacr.org/
2019/718 https://eprint.iacr.org/2019/718.

[6] Fabien Boemer, Karl Tarbe, and Rehan Rishi. 2024. Announcing Swift Homomorphic Encryption. https://www.swift.
org/blog/announcing-swift-homomorphic-encryption/

[7] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. 2015. Armadillo: A Compilation Chain for Privacy Preserving
Applications. In Proceedings of the 3rd International Workshop on Security in Cloud Computing (Singapore, Republic of
Singapore) (SCC ’15). Association for Computing Machinery, New York, NY, USA, 13–19. https://doi.org/10.1145/
2732516.2732520

[8] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. 2018. Labeled PSI from Fully Homomorphic Encryption with
Malicious Security. Cryptology ePrint Archive, Paper 2018/787. https://doi.org/10.1145/3243734.3243836

[9] Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast Private Set Intersection from Homomorphic Encryption. Cryptology
ePrint Archive, Paper 2017/299. https://eprint.iacr.org/2017/299

[10] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. August 2016. TFHE: Fast Fully Homomorphic
Encryption Library. https://tfhe.github.io/tfhe/.

[11] HEIR Contributors. 2023. HEIR: Homomorphic Encryption Intermediate Representation. https://github.com/google/
heir.

[12] XLS Contributors. 2024. XLS: Accelerated HW Synthesis. https://github.com/google/xls.
[13] Meghan Cowan, Deeksha Dangwal, Armin Alaghi, Caroline Trippel, Vincent T. Lee, and Brandon Reagen. 2021.

Porcupine: A Synthesizing Compiler for Vectorized Homomorphic Encryption. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021).
Association for Computing Machinery, New York, NY, USA, 375–389. https://doi.org/10.1145/3453483.3454050

[14] Eric Crockett, Chris Peikert, and Chad Sharp. 2018. ALCHEMY: A Language and Compiler for Homomorphic
Encryption Made EasY. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(Toronto, Canada) (CCS ’18). Association for Computing Machinery, New York, NY, USA, 1020–1037. https://doi.org/
10.1145/3243734.3243828

[15] Craig Gentry. 2009. A Fully Homomorphic Encryption Scheme. Ph. D. Dissertation. Stanford, CA, USA. Advisor(s)
Boneh, Dan. AAI3382729.

[16] Craig Gentry, Shai Halevi, and Nigel P. Smart. 2012. Better Bootstrapping in Fully Homomorphic Encryption. In
Public Key Cryptography – PKC 2012, Marc Fischlin, Johannes Buchmann, and Mark Manulis (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 1–16.

[17] Shruthi Gorantala, Rob Springer, Sean Purser-Haskell, William Lam, Royce Wilson, Asra Ali, Eric P. Astor, Itai
Zukerman, Sam Ruth, Christoph Dibak, Phillipp Schoppmann, Sasha Kulankhina, Alain Forget, David Marn, Cameron
Tew, Rafael Misoczki, Bernat Guillen, Xinyu Ye, Dennis Kraft, Damien Desfontaines, Aishe Krishnamurthy, Miguel
Guevara, Irippuge Milinda Perera, Yurii Sushko, and Bryant Gipson. 2021. A General Purpose Transpiler for Fully
Homomorphic Encryption. Cryptology ePrint Archive, Paper 2021/811. https://eprint.iacr.org/2021/811 https:
//eprint.iacr.org/2021/811.

[18] Charles Gouert, Vinu Joseph, Steven Dalton, Cedric Augonnet, Michael Garland, and Nektarios Georgios Tsoutsos.
2023. Accelerated Encrypted Execution of General-Purpose Applications. Cryptology ePrint Archive, Paper 2023/641.
https://eprint.iacr.org/2023/641 https://eprint.iacr.org/2023/641.

[19] Aleksandar Krastev, Nikola Samardzic, Simon Langowski, Srinivas Devadas, and Daniel Sanchez. 2024. A Tensor
Compiler with Automatic Data Packing for Simple and Efficient Fully Homomorphic Encryption. Proc. ACM Program.

https://doi.org/10.1145/3338469.3358945
https://doi.org/10.1145/3338469.3358945
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://arxiv.org/abs/1702.03379
http://arxiv.org/abs/1702.03379
https://eprint.iacr.org/2019/718
https://eprint.iacr.org/2019/718
https://eprint.iacr.org/2019/718
https://www.swift.org/blog/announcing-swift-homomorphic-encryption/
https://www.swift.org/blog/announcing-swift-homomorphic-encryption/
https://doi.org/10.1145/2732516.2732520
https://doi.org/10.1145/2732516.2732520
https://doi.org/10.1145/3243734.3243836
https://eprint.iacr.org/2017/299
https://github.com/google/heir
https://github.com/google/heir
https://github.com/google/xls
https://doi.org/10.1145/3453483.3454050
https://doi.org/10.1145/3243734.3243828
https://doi.org/10.1145/3243734.3243828
https://eprint.iacr.org/2021/811
https://eprint.iacr.org/2021/811
https://eprint.iacr.org/2021/811
https://eprint.iacr.org/2023/641
https://eprint.iacr.org/2023/641


Circuit Optimization Using Arithmetic Table Lookups 21

Lang. 8, PLDI, Article 152 (June 2024), 25 pages. https://doi.org/10.1145/3656382
[20] Chris Lattner and Jacques Pienaar. 2019. MLIR Primer: A Compiler Infrastructure for the End of Moore’s Law.
[21] DongKwon Lee, Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi. 2020. Optimizing Homomorphic Evaluation Circuits by

Program Synthesis and Term Rewriting. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA,
503–518. https://doi.org/10.1145/3385412.3385996

[22] Raghav Malik, Kabir Sheth, and Milind Kulkarni. 2023. Coyote: A Compiler for Vectorizing Encrypted Arithmetic
Circuits. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New
York, NY, USA, 118–133. https://doi.org/10.1145/3582016.3582057

[23] Daniele Micciancio and Yuriy Polyakov. 2020. Bootstrapping in FHEW-like Cryptosystems. Cryptology ePrint Archive,
Paper 2020/086. https://eprint.iacr.org/2020/086

[24] Alan Mishchenko. 2024. ABC: A System for Sequential Synthesis and Verification. https://people.eecs.berkeley.edu/
~alanmi/abc.

[25] Simon Moll and Sebastian Hack. 2018. Partial Control-Flow Linearization. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for
Computing Machinery, New York, NY, USA, 543–556. https://doi.org/10.1145/3192366.3192413

[26] Laurent Perron, Frédéric Didier, and Steven Gay. 2023. The CP-SAT-LP Solver. In 29th International Conference on
Principles and Practice of Constraint Programming (CP 2023) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 280), Roland H. C. Yap (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 3:1–3:2.
https://doi.org/10.4230/LIPIcs.CP.2023.3

[27] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality Saturation: A New Approach to Optimiza-
tion. SIGPLAN Not. 44, 1 (jan 2009), 264–276. https://doi.org/10.1145/1594834.1480915

[28] Alexander Viand, Patrick Jattke, Miro Haller, and Anwar Hithnawi. 2023. HECO: Fully Homomorphic Encryption
Compiler. arXiv:2202.01649 [cs.CR]

[29] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021.
Egg: Fast and Extensible Equality Saturation. Proc. ACM Program. Lang. 5, POPL, Article 23 (jan 2021), 29 pages.
https://doi.org/10.1145/3434304

[30] Claire Wolf. [n. d.]. Yosys Open SYnthesis Suite. https://yosyshq.net/yosys/.
[31] Zama. 2022. Concrete: TFHE Compiler that converts python programs into FHE equivalent. https://github.com/zama-

ai/concrete.

https://doi.org/10.1145/3656382
https://doi.org/10.1145/3385412.3385996
https://doi.org/10.1145/3582016.3582057
https://eprint.iacr.org/2020/086
https://people.eecs.berkeley.edu/~alanmi/abc
https://people.eecs.berkeley.edu/~alanmi/abc
https://doi.org/10.1145/3192366.3192413
https://doi.org/10.4230/LIPIcs.CP.2023.3
https://doi.org/10.1145/1594834.1480915
https://arxiv.org/abs/2202.01649
https://doi.org/10.1145/3434304
https://yosyshq.net/yosys/
https://github.com/zama-ai/concrete
https://github.com/zama-ai/concrete

	Abstract
	1 Introduction
	1.1 Boolean FHE Compilers
	1.2 COATL

	2 Background
	2.1 Fully Homomorphic Encryption
	2.2 CGGI
	2.3 HEIR

	3 Overview
	3.1 Compiling Boolean FHE
	3.2 Optimizing Circuits with COATL

	4 Design
	4.1 Arithmetic LUT Formalism
	4.2 Building Lookup Tables
	4.3 Finding Gates to Merge

	5 Implementation
	5.1 Unrolling Secret Loops
	5.2 OpenFHE Code Generation

	6 Evaluation
	6.1 How efficient are the programs COATL generates compared to the baseline generated code?
	6.2 What is the compile time impact of doing the COATL optimization?
	6.3 How well does the COATL optimization scale to increasing input size?
	6.4 Impact of solver timeout on performance and compile time

	7 Related Work
	7.1 FHE Compilers
	7.2 Circuit Optimization

	8 Conclusion
	References

