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ABSTRACT
Fully Homomorphic Encryption (FHE) enables secure computation
on encrypted data, ensuring privacy in various applications. How-
ever, FHE’s practicality is constrained by the substantial overhead of
encrypted computation. This overhead can be partially mitigated by
using vectorization strategies to optimize FHE computations. The
unique semantics of FHE computations make vectorizing arbitrary
applications challenging, so recent research focuses on applying
synthesis-based techniques, which have the drawback of failing to
scale well to vectorizing large programs.

This paper proposes, Biscotti, a compiler pass that integrates
with existing synthesis-based vectorization approaches by breaking
programs down into more manageable pieces, synthesizing vector
schedules for each piece, and then composing these into a schedule
for the entire program. We demonstrate on a variety of common
benchmarks that Biscotti’s approach not only improves compilation
times, but also results in more efficient schedules overall.

1 INTRODUCTION
Fully Homomorphic Encryption (FHE) refers to a class of encryp-
tion schemes that support performing computations directly on
ciphertexts without needing to decrypt them first. FHE is crucial
for applications such as secure multiparty computation and se-
cure machine learning, but the extreme inefficiency of encrypted
computation presents a barrier to its widespread adoption: even
state-of-the-art FHE implementations incur an overhead of sev-
eral orders of magnitude when compared to carrying out the same
computation over unencrypted data [9, 17].

1.1 Vectorizing in FHE
The formulation of many FHE schemes enables programmers to
alleviate some of the overheads of encrypted computation via an
optimization known as ciphertext packing. Schemes that support
ciphertext packing allow multiple plaintext values to be encrypted
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into a single ciphertext vector, so that homomorphic operations on
the ciphertext vector occur elementwise on the underlying plain-
texts (Section 2.2). These schemes therefore allow programmers
to vectorize their FHE computations, by, for example, replacing a
sequence of 𝑛 independent multiplications with a single vectorized
operation; this results in fewer homomorphic operations overall,
and hence, better performance.

Manually vectorizing arbitrary programs is difficult, and FHE
vectors have some peculiar semantics that make vectorization par-
ticularly tedious. In particular, shuffling data between vector slots
(hereafter called lanes) can only be done via an expensive operation
called rotation; hence, minimizing rotations is crucial to achiev-
ing efficient vector schedules. Vectorizing FHE compilers can be
broadly classified by how they address this issue. On one side of
the spectrum, tools like Coyote [13] and Porcupine [4] frame vec-
torization as a search problem, and use synthesis techniques to find
efficient rotation patterns for arbitrary computations. While these
techniques tend to work quite well for programs with a small num-
ber of instructions, they often fail to scale up to larger programs
with a more massive search space.

On the other hand, compilers such as HECO [18] and CHET [7]
focus on vectorizing programs that require very few rotations in
the first place, often relying on language constructs like arrays and
tensors to determine when this is possible. They can therefore scale
up to much larger kernels, but this comes at the cost of placing
restrictions on the class of programs they can vectorize, making
them significantly less general than the aforementioned search-
based techniques.

1.2 The Middle Ground
The FHE vectorizers described so far either generalize or scale;
in this paper, we present Biscotti, a vectorizer that does both by
achieving a “happy medium” between the two extremes. The key
insight that enables this is that large, complex programs can usually
be decomposed into computations that are smaller, and therefore,
crucially, easier to vectorize.

As an example, consider the 8-element convolution shown in
Figure 1, which can be decomposed into two smaller convolutions
over 5 and 6 elements. While the search timeouts cause Coyote to
generate suboptimal schedules for the full 8-element convolution, it
is able to quickly find much better schedules for each subprogram.
In fact, by running the vectorized subprograms in parallel, we can
achieve a much better schedule overall!
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This forms the core of Biscotti’s vectorization procedure. In
particular, Biscotti starts decomposing a large computation into
smaller subprograms. It uses Coyote to quickly synthesize efficient
vector schedules for each subprogram, and then composes each
vectorized subprogram back into a much more efficient schedule
for the original computation.

1.3 Contributions
The specific contributions we make in this paper are:

(1) An algorithm to decompose and compose subprograms to-
gether to enable parallel execution.

(2) Modifications to the embedded DSL (eDSL) in Coyote for
loop tiling.

(3) Extension of the said algorithm for parallel execution of
bounded-depth recursion and function compositions.

We tested Biscotti to compile three computation kernels (point
clound distances, matrix multiplicaitions and 1D convolution) and
compared the compilation and runtimes with with Coyote compiled
programs. We also investigate the effects of choosing subprograms
of varying granularity. We find that Biscotti, yields better compila-
tion times, more efficient schedules and better runtimes.

2 BACKGROUND
2.1 Fully Homomorphic Encryption
Fully Homomorphic Encryption (FHE) is an encryption paradigm
that enables the computation of arbitrary functions on encrypted
data without requiring a decryption key. This capability has a wide
array of applications, including facilitating private search queries,
conducting encrypted data searches, and enabling efficient and
secure multiparty computation [8]. We use the the Brakerski/Fan-
Vercauteren (BFV) cryptosystem, which is founded on the Ring
Learning With Errors (RLWE) problem [1].

Limitations. First, homomorphic arithmetic operations applied to
ciphertexts often exhibit performance that is orders of magnitude
slower compared to their plain text equivalents. This slowdown is
even more pronounced when the ciphertext size increases, which
can happen in larger circuits or with higher security parameters.
Consequently, many practical applications that utilize fully homo-
morphic encryption (FHE) circuits face a notable slowdown in exe-
cution, rendering them impractically slow. Overcoming these per-
formance challenges requires substantial expertise and experience
in crafting FHE programs. Furthermore, the security assurances
provided by FHE necessitate that all operations are data indepen-
dent. While certain forms of conditional logic can be emulated,
every potential branch must be evaluated, leading to considerable
degradation in performance.

2.2 Vectorization
The mathematical formulation of Fully Homomorphic Encryption
(FHE) allows for ciphertext packing, a technique where scalar com-
putations are extended to operate over packed vectors. Cipher-
text packing helps enhance the overall runtime complexity and
effectively establishes a Single Instruction, Multiple Data (SIMD)
architecture. Classical SIMD-methods rely on loop vectorization,

wherein a data-parallel loop is unrolled by a fixed number of itera-
tions to produce a set of isomorphic instructions which are then
vectorized together. In contrast, Superword-Level Parallelism (SLP),
focuses on vectorizing arbitrary, non-loop based code by identify-
ing groups of isomorphic independent instructions and scheduling
them into vectors [10, 14].

Vectorization in FHE. The BFV encryption scheme is a specific
instantiation of FHE which permits packing many plaintext el-
ements into a ciphertext [1]. Homomorphic operations correspond
to element-wise operations on the underlying vectors. The BFV
scheme also supports certain operations that allow vector slots
(hereafter referred to as lanes) to be permuted cyclically (hereafter
referred to as rotations). This style of vectorization has a few at-
tributes that differentiate it from normal vectorization:

(1) Vector slots are on the order of thousands compared to hard-
ware vectors that are only a few slots wide. Therefore, it
becomes essential to use as many vector slots as possibles to
ameliorate loss in performance.

(2) Absence of indexing prevents accessing a value directly from
a slot of a ciphertext vector.

(3) Data movement between slots in a vector is enabled by rotat-
ing the vector. This puts a heightened emphasis on assigning
the correct vector lanes when packing instructions, because
realizing arbitrary permutations is computationally expen-
sive. It is often more prudent to give up vectorization, to
avoid incurring costly rotations [13].

2.3 Coyote
Coyote is an FHE-aware vectorizing compiler that targets programs
that do not have regular structure [13]. Given an arithmetic cir-
cuit, Coyote produces a large graph enumerating potential vector
schedules, and then searches this space to find a good one. How-
ever, the size of the graph is roughly exponential in the size of
the program, so this search procedure quickly becomes intractable,
even for moderately sized programs. Importantly, this means that
for larger programs, the search often times out and produces sub
optimal schedules.

3 OVERVIEW
Biscotti is built as an optimization on top of Coyote (Section 2.3).
Recall that while Coyote can synthesize good vector schedules for
smaller programs, its search strategy quickly becomes intractable
for larger programs. Biscotti is an optimization built on top of Coy-
ote that addresses this limitation by noticing that large programs
can often be broken down into smaller, more manageable subpro-
grams.We can realize the patterns of decomposing a larger program
through the following methods:

(1) Tiling: We can decompose a program’s iteration space into
smaller, repetitive ’tiles,’ each of which can be independently
compiled. This loop transformation technique is used by com-
pilers to facilitate the creation of blocked algorithms [19]. We
coalesce isomorphic operations in an iteration space, i.e. split
the index set into well-structured iteration subsets, gener-
ate schedules for each element in the subset, and parallelize
them.
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Figure 1: Convolution of an 8-element signal vector with a 4-element kernel vector decomposed to two subprograms.

(2) Recursion: After generating the call tree of a bounded-depth
recursive function to a desired depth, we can isolate sym-
metric sub-graphs and generate a vector schedules for the
sub-graphs independently. Following compilation, we paral-
lelize the schedules, followed by the addition of necessary
reduction steps as specified by the call tree to avail the final
outcome of the program.

(3) Function Compositions: Consider a function 𝑓 composed of
𝑓1 and 𝑓2, denoted by 𝑓 = 𝑓1 ◦ 𝑓2. Vector schedules for each
function 𝑓1 and 𝑓2 are compiled independently and a com-
posite schedule is generated with calls to functions 𝑓1 and
𝑓2.

Biscotti uses Coyote to vectorize subprograms generated by
tiling and composes the schedules back into a vector schedule for
the large program. We discuss the other two techniques, recursion
and function composition, in more detail in Section 7. We explain the
overall workflow of the Biscotti by using the running example of
convolving an 8-element signal vector with a 4-element kernel
vector, as illustrated in Figure 1.

Decomposition. Biscotti begins by breaking down a large program
into smaller subprograms by using loop tiling as detailed in Sec-
tion 5.

# Original loop structure
def conv8(signal, kernel):

for i in range(5):
sum = 0
for j in range(4):

sum += signal[i] * kernel[j]
output[i] = sum

return output

As shown in the original loop structure above, the initial imple-
mentation iterates over an 8-element signal vector.

# Loop tiling with a factor of 2
def conv8_loop1(signal, kernel):

for i in range(3):
sum = 0
for j in range(4):

sum += signal[i] * kernel[j]
output[i] = sum

return output

def conv8_loop2(signal, kernel)
for i in range(3, 5):

sum = 0
for j in range(4):

sum += signal[i] * kernel[j]
output[i] = sum

return output

We modify the original loop structure by applying a tiling factor
of 2, which segments the iteration space into 2 smaller blocks. This
restructuring does not directly speed up the loops when run sep-
arately; instead, it enhances their suitability for vectorization by
tools such as Coyote. These smaller, more manageable blocks signif-
icantly increase the chances for Coyote to identify highly efficient
schedules for these segmented iteration spaces, or subprograms.
The resulting schedules generated by Coyote is demonstrated in
Figure 2.

Composition. We retrieve the schedules produced in decomposition,
align similar instructions as illustrated in Figure 3 and compose
them together through interleaving to enable parallel execution of
the subprograms. We discuss composition and interleaving in more
detail in Section 4.2.

4 DESIGN
The Biscotti framework employs a two-step method involving De-
composition and Composition. It begins by breaking down loops
according to a programmer defined tiling factor and target loop,
as outlined in Section 5. In the composition phase, we ensure the
efficiency gains from Coyote are retained by correctly merging the
optimized schedules. Incorrect composition can result in additional
computation and unnecessary instructions, effectively multiplying
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the workload. To prevent this, we propose an interleaving method
for schedule integration, discussed further in Section 4.2.

4.1 Decomposition
We primarily focus on loop tiling from the decomposition strategies
outlined in Section 3. It is relatively straightforward to extend these
ideas to the other strategies as discussed in Section 7.

Biscotti allows the programmer to annotate the loops they wish
to tile by a tiling factor. Biscotti segments the iteration space of
the specified loop, by modifying the specified loop indices based
on the tiling factor. We refer to these segmented iteration spaces
as subprograms. Section 5 delves deeper into the specifics of how
programmers can annotate the loops to tile. This process effectively
divides the program into independent subprograms that can be
executed simultaneously. The choice of the tiling factor plays a role
in the optimization of the compilation and run times. We discuss
the implications of choosing different tiling factors in Section 6.4.

In the running example in Figure 1 the signal vector of size 8
with a kernel of size 4, the outer loop is broken down into two tiles
by modifying the loop indices into tiles to {[0:3], [3:5]}. Coyote
generates vector schedules for the two tiles in parallel. Figures 2
show the Coyote generated schedules for the loop tiles.

4.2 Composition
4.2.1 Operation Sequencing. We cannot guarantee that Coyote will
generate isomorphic schedules even if two different subprograms
have the same iteration spaces because Coyote’s search procedures
for the decomposed subprograms run independently; they may con-
verge on different solutions. Therefore, Biscotti must align vector
instructions with the same operations together before schedule
composition. The schedules in Figures 2 from the convolution ker-
nel have varying vector instructions which must be aligned before
composing the instructions together. We formalize this process
through the computation of a sequence alignment between the
operations across all the different sub-schedules by utilizing the
Needleman-Wunsch algorithm [15]. Figure 3 illustrates the align-
ment of operations from the two schedules in Figure 2. It should be
noted that in the alignment depicted in Figure 3a, two instructions
from schedule 2 remain unaligned. Consequently, these instructions
are aligned with no-operations (no-ops) in the finalized schedule.

4.2.2 Executing the Interleave. Before interleaving process of the
schedules, register numbers must be renumbered to ensure pro-
gram correctness and to avoid conflicts between different schedules
during composition.

For each aligned vector instruction in the schedules, we inter-
leave the lanes by alternating between lanes while maintaining
their original sequence. We combine the lanes from different vector
schedules into a unified instruction, where the order of elements
from each original sequence is preserved. Figures 4a and 4b shows
two rotations instructions. Figure 4d shows the interleaved results
of the instruction wherein the first lane from instruction 1 is
scheduled in lane 0, and the first lane from instruction 2 is
scheduled in lane 1. We repeat this until all the aligned vector
instructions sets have been composed together.

4.2.3 Side by Side vs Interleaving. We choose interleaving over side-
by-side placement to parallelize subprogram vector schedules. This
choice is motivated by the efficiency of interleaving in handling
rotation operations (Section 2.2), a key idea of optimization in the
Coyote compiler. When comparing to a side-by-side arrangement,
as shown in Figure 4c, trying to align data slots from each subpro-
gram in an interleaved format can lead to an excessive number of
rotations and multiple vector maskings to achieve the same number
of rotations and alignment in lanes as represented in Figures 4a
and 4b. Given how expensive each rotation is, attempting to paral-
lelize subprogram schedules this way counteracts the optimization
benefits provided by Coyote, making it less effective to produce an
optimized final schedule.

In contrast, interleaving operations from one schedule with an-
other helps to reduce the overall number of rotations needed to
achieve a specific alignment in the interleaved schedule. For in-
stance, a single leftward rotation in both subprogram schedules, as
illustrated in 4d, can be achieved by preserving the same amount of
rotations in Figures 4a and 4b. This method aligns with Coyote’s ob-
jective to decrease rotational operations, optimizing the efficiency
of vector scheduling.

5 IMPLEMENTATION
This section discusses how programmers can use Biscotti, to write
Coyote programs, and how the code is generated.

Coyote provides an embedded Domain-Specific Language (eDSL)
within Python, designed for writing FHE programs. This DSL em-
powers users to perform arbitrary arithmetic computations over
encrypted variables, leveraging conditionals and loops over plain-
text values to express complex algorithms. Before generating the
arithmetic circuit, all conditionals and loops are fully evaluated and
unrolled, with all function calls being fully inlined. This process
ensures a direct translation of high-level constructs into a form
suitable for encrypted computation.

We integrate Biscotti into the eDSL, allowing users to specify
tiling as part of the function declaration. This is achieved through
an enhanced decorator mechanism, where the user can indicate the
desired tiling for loops within the function. Biscotti then automat-
ically segments the iteration space by manipulating the Abstract
Syntax Tree (AST) of the specified loops according to the tiling
parameters, ensuring that each tile is fully unrolled and inlined in
preparation for circuit generation.

@coyote.define(signal=vector(8), kernel=vector(4),

tile=4, loop_target=i)↩→

def conv8(signal, kernel):
for i in range(5):

sum = 0
for j in range(4):

sum += signal[i] * kernel[j]
output[i] = sum

Once the arithmetic circuit is generated, reflecting both the com-
putation logic and the applied loop tiling optimizations, Coyote’s
backend takes over. It vectorizes the tiles in parallel, translating the
high-level circuit into a sequence of primitive vector operations.
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 1 [%0, %19, %3, %27, %7, %10] = [v0, v4, v1, v5, v2, v3] 

 2 [_, _, %8, %4, %11, %1]     = [_, _, k2, k1, k3, k0]

 3 [%20, %5, %28, %16, %12, %24] = [%19, %3, %27, %7, %10, %10] * [%11, %4, %11, %4, %11, %4]

 4 [%18, %2, %26, %15, %9, %23]  = [%10, %0, %19, %3, %7, %7]   * [%8, %1, %8, %1, %8, %1]

 5 [%21, %6, %29, %17, %13, %25] = [%18, %2, %26, %15, %9, %23] + [%20, %5, %28, %16, %12, %24]

 6 [%22, %14, %30, _, _, _] = [%17, %6, %25, _, _, _] + [%21, %13, %29, _, _, _]

(a) Schedule for conv[0:5] (schedule 1)
 

 1 [_, %19, %10, _, %7, _, %3, %0] = [_, v7, v6, _, v5, _, v4, v3]

 2 [%11, _, %8, _, %4, _, %1, _] = [k3, _, k2, _, k1, _, k0, _] 
 3 [%20, %12, _, %9, %6, %5, %15, %2] = [%19, %10, _, %7, %7, %3, %3, %0] * [%11, %11, _, %8, %4, %4, %1, %1]

 4 [_, _, _, _, _, _, %17, %6] = [_, _, _, _, _, _, %15, %2] + [_, _, _, _, _, _, %16, %5]
 5 [_, _, %18, _, _, _, _, _] = [_, _, %10, _, _, _, _, _] * [_, _, %8, _, _, _, _, _]
 6 [_, _, %21, _, _, _, _, _] = [_, _, %18, _, _, _, _, _]  + [_, _, %20, _, _, _, _, _]

 7 [_, _, %22, %13, _, _, _, _] = [_, _, %7, %9, _, _, _, _] + [_, _, %21, %12, _, _, _, _]
 8 [_, _, _, %14, _, _, _, _] = [_, _, _, %6, _, _, _, _]   + [_, _, _, %13, _, _, _, _]

(b) Schedule for conv[3:7] (schedule 2)

Figure 2: Coyote generated schedules after decomposition through tiling
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Figure 3: Vector Operations Sequence Alignment: Original
vs. Post-Alignment

Biscotti, then uses the generated vector schedules and composes
all of them together in two passes: (1) Sequence Alignment and (2)
Interleaving. This vectorized form is then further lowered into C++
code, targeting the Microsoft SEAL backend for the BFV scheme
[17]. The incorporation of loop tiling into this workflow optimizes
the underlying arithmetic circuits, making them more efficient and
suitable for the computational demands of FHE, thereby enhancing
the overall performance of Coyote-generated programs.

6 EVALUATION
In this evaluation, we address the following questions:

(1) How much faster are Biscotti’s compile times com-
pared to Coyote’s compile times? We compile the bench-
marks described in Section 6.1 using both Biscotti and Coy-
ote, and compare how long each benchmark takes to compile
(Figure 5). Biscotti’s compilation strategy for each bench-
mark is described in Section 6.2.

(2) How efficient is the code that Biscotti generates com-
pared to Coyote?We compile the benchmarks in Section 6.1

- %19 %10 - %7 - %3 %0 >> 1 %0 - %19 %10 - %7 - %3

(a) Instruction 1 - Rotation by 1

- %50 %41 - %38 - %34 %31 >> 1 %31 - %41 - %38 - %34

(b) Instruction 2 - Rotation by 1

>> ? + masks

- %19 %10 - %7 - %3 %0 - %50 %41 - %38 - %34 %31

%31 - %50 %41 - %38 - %34%0 - %19 %10 - %7 - %3

(c) Side by Side Scheduling where the concatenated vectors must ro-
tated at varying degrees and then merged through masking multiple
variations of the same vector to achieve the targeted outcome.

- - %19 %50 %10 %41 - - %7 %38 - - %3 %34 %0 %31

%0 %31 - - %19 %50 %10 %41 - - %7 %38 - - %3 %34

>> 2

(d) Interleaved Scheduling where rotations are preserved from the
instruction being composed.

Figure 4: Scheduling vectors Side by Side vs. Interleaving

using both Biscotti and Coyote, and compare the runtimes
across 10 iterations.

(3) How does the size of the tiles influence the compila-
tion time and execution time of the code generated by
Biscotti? We compile the benchmarks in Section 6.4 with
varying tiling factors and compare the compile times and
runtimes.

6.1 Benchmarks
We answer questions 1 and 2 using the following benchmarks.

(1) Point Cloud Distance between 2 vectors of size 10 with a
tiling factor of 2.
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(2) Matrix multiplication of a 4 × 4 matrix with a tiling factor of
2.

(3) Convolution with a vector of size 8, a kernel size of 4, with
a tiling factor of 2.

(4) Convolution with a vector of size 10, a kernel size of 5, with
a tiling factor of 3.

(5) Matrix multiplication of a 9 × 9 matrix, with a tiling factor
of 3 .

(6) Convolution with a vector size of 12, a kernel size of 3, with
a tiling factor of 4.

6.2 Compile Time Comparison of Biscotti with
Coyote

As demonstrated in Figure 5, Biscotti offers a substantial reduction
in compilation times compared to Coyote, achieving up to a 31.3x
speedup, particularly noted in Benchmark 5. These results validate
the efficiency of Biscotti’s loop transformation technique, which
mitigates the challenges of large arithmetic circuits by decomposing
large programs into more manageable subprograms. Consequently,
Biscotti enables faster identification of vector schedules for these
subprograms, leading to reduced compilation times. It compiles
these subprograms concurrently to generate vector schedules for
each subprogram via Coyote. The integration of these individual
schedules into a comprehensive final schedule, as outlined in Sec-
tion 4 has a negligible impact on the total compilation time.

6.3 Runtime Comparison of Biscotti with
Coyote

Figure 6 illustrates Biscotti’s advantage over Coyote in runtime per-
formance. By generating subprograms from less complex arithmetic
circuits, Biscotti reduces the size of the space Coyote has to search,
making it more likely to find a more optimal vector schedule. The
performance improvements are consistent across all benchmarks,
with each showing a minimum of 1.4x speedup. The significant
15.8x speedup demonstrated in Benchmark 5 highlight Biscotti’s
capability to overcome the challenges that Coyote faces with large
circuits. We also support our assertion that Biscotti generates fewer
vector instructions overall compared to Coyote from Table 1 by
comparing the number of vector instructions generated by the two
systems. For instance, Benchmark 5 has the highest number of
vector instructions generated by Coyote, totaling 426 while Biscotti
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condenses the instruction count to 45 by using a tiling factor of
3. Biscotti coalesces instructions in parallel from highly efficient
subprogram schedules which, in general, will always have fewer
instructions than schedules generated without tiling factors using
Coyote. Finally, Figure 7 compares the runtimes against both scalar
and vector instructions for Biscotti. Biscotti always performs better
in comparison to scalar code generated from Biscotti, and vector
code generated from Coyote.

Table 1: Number of Vector Instructions for Coyote and Bis-
cotti

Benchmark # BISCOTTI # COYOTE

Distances10 60 214
MatrixMul4x4 26 91
Conv8by4 37 376
Conv10by5 27 45
MatrixMul9x9 45 426
Conv12by3 81 215

6.4 Tiling Factor Comparison using Biscotti
We answer question 3 we using the following benchmarks.

(1) Convolution with a vector of size 16, kernel size of 5 with a
tiling factor of 2, 3 and 4.
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(2) Matrix multiplication of two 16 × 16 matrices with a tiling
factor of 2, 4 and 8.

Figures 8 and 9 suggest that a large tiling factor leads to a small
tile size which enhance performance, as they result in simpler sub-
programs. The reduction in the complexity and size of the subpro-
grams leads to a narrower search space for Coyote. The probability
that Coyote is able to converge on a highly efficient schedules is
much higher which leads to enhanced compile times and runtimes.
However, an interesting observation from Figure 8 from Bench-
mark 1 (Conv16by5) is that the runtime does not improve when
increasing the number of subprograms 2 to 3. This could be ex-
plained by the minimal reduction in vector instructions (Table 2)
down from 79 to 74 when comparing tiling factors 2 and 3. Conse-
quently, the benefit of a smaller search space does not significantly
enhance runtime in this instance.

Table 2: Biscotti Vector Instructions with Various Tile Factors

Operation # BISCOTTI TILING FACTOR

Conv16by5 79 2
Conv16by5 74 3
Conv16by5 54 4
Matrix16by16 1375 2
Matrix16by16 213 4
Matrix16by16 29 8

While smaller tiles can reduce complexity and potentially speed
up the scheduling and compilation process, there is a point of di-
minishing returns. Over-tiling can lead to excessive decomposition,
where the overhead of managing numerous smaller subprograms
outweighs the benefits of the improved search space. This balance
is crucial as tile sizes that are too small might result in lost vectoriza-
tion benefits, hence negating performance gains. Conversely, large
tile sizes may overwhelm Coyote’s ability to efficiently navigate
the search space, hindering its capacity to find optimal schedules.
The choice of tile size emerges as a critical factor in the efficiency
of the vector schedule generated.

7 DISCUSSION
As discussed in Section 2, the recursion method can be extended
to Biscotti. For a bounded-recursion, we can build a call graph to
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fib(5)

fib(6)

fib(3) fib(2)

fib(4)

fib(4) fib(3)

fib(3) fib(2)

subprograms

Figure 10: Fibonacci Recursion Call Tree

dot6
1 [%0, %1] = dot3([x[0:2], y[0:2]], [x[3:5], y[3:5]])
2 [%2, _]  = [%0, _] + [%1, _]

Figure 11: Schedule for dot6 composed of dot3

a specified depth, and identify sub-graphs to be compiled using
Coyote. The sub-graph schedules can then be parallelized, with the
necessary reduction steps as defined by the call tree to produce
the final result of the program. In Figure 10, Coyote can be used to
generate subprograms for the Fibonacci sequences of depth 4 and 3.
By using Biscotti these schedules are then interleaved at each depth,
to construct the final schedule, and then reduced at each level to
integrate the outcomes from the lower depths. We restrict Biscotti’s
approach to only bounded-depth recursion because all condition-
als must be evaluated at compile time to avail any vectorization
opportunities (Section 2.2).

The method of Function Decomposition, described in Section 3
can be extended to Biscotti. We can apply this method when we
have a function 𝑓 is composed of functions 𝑓1 and 𝑓2, denoted by
𝑓 = 𝑓1 ◦ 𝑓2. Vector schedules for each constituent function, 𝑓1 and
𝑓2, can be generated and compiled independently. Subsequently, a
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composite schedule that includes calls to both 𝑓1 and 𝑓2 can then be
synthesized using Biscotti. For instance, consider the expressions
dot(6) = dot(3) + dot(3). Here, the function dot is designed to
calculate the dot product of a vector. In this context, dot(6) refers to
the dot product of a 6 element vector. To simplify the computation,
this operation is divided into two smaller dot product calculations
of 3 element sub-vectors. The final result is obtained by adding
the results of these two dot(3) operations. Here, schedules for
dot(3) are generated independently. This strategy is illustrated in
Figure 11, which shows the composition for generating a schedule
for dot(6).

8 RELATEDWORK
There exists a whole host of compilers that target vectorization in
FHE [4–7, 9, 12, 13].

Coyote [13], the vectorizing compiler that we use, generates
efficient vector schedules by searching a large graph for schedules
that minimize rotations.

Porcupine is another vectorizing compiler that uses a sketch-
based synthesis approach to generate vectorized kernels given a
reference implementation. Porcupine uses heavy-weight synthesis
techniques that are designed to work for irregular programs, but
it is not automated and requires a programmer-provided sketch
as a starting point [4]. The synthesis-based approach makes Por-
cupine’s compile times long (up to many minutes) and limits the
size of the programs it can handle. Both Porcupine and Coyote
make no assumptions about the programs, but they suffer from
poor compilation times. Biscotti targets synthesis-based compilers
for FHE and vectorizes subcircuits instead of an entire circuit at
once, and hence is able to scale better.

CHET is a vectorizing compiler for homomorphic tensor pro-
grams that automatically selects encryption parameters and chooses
efficient tensor layouts. CHET is designed to optimize dense ten-
sor operations in neural network inference, and does not work
well with other types of programs, especially those with irregular
computations that are difficult to vectorize [7]. HECO is another
compiler that restructures high-level imperative programs to FHE
operations through a variety of circuit optimizations to produce
vector code [18]. In particular, HECO is optimized for regular pro-
grams which include dense loops. While Biscotti can handle such
programs (for example, by identifying the loop body as a subcircuit),
it is designed for much more general applications.

8.1 General Vectorization Techniques
Loop Vectorization. Loop vectorization is a technique that uses data
level parallelism to improve the performance of loops by pack-
ing instructions into vectors [11, 16]. Traditional loop vectorizing
compilers build a dependence graph with direction and distance in-
formation to determine whether a loop is vectorizable. This process
involves expanding each operation in the loop from a scalar type to
a vector type, which is straightforward for simple loops. However,
many computations require more advanced loop transformations
to be in a vectorizable form and without dependencies to ensure
consistency. Biscotti does not only rely on looping structures and
can build schedules for any programs.

Superword Level Parallelism. Superword-Level Parallelism (SLP) is
a technique for automatically vectorizing a more general class of
programs. SLP iterates over sets of isomorphic scalar instructions
and packs them into vectors [10]. SLP works well with irregular
programs, because it does not rely on the presence of data-parallel
loops. However, SLP does not take into consideration the cost of ro-
tations, nor does it have wide enough vector slots. Modern variants
of SLP such as VeGen [3] and goSLP [14] do factor in data move-
ment costs, but cannot fully capture the subtlety of rotation costs
in FHE. SuperVectorization, generalizes SLP to uncover parallelism
that spans different blocks and loops nests [2]. SuperVectorization
analyzes straight line code, and finds vectorization opportunities by
subsuming the role of an outer-loop, inner-loop and straight lines
vectorizers. Biscotti focuses on finding and scheduling operations
to enable parallel execution by determining patterns in a program.

9 CONCLUSION
In this paper, we introduce Biscotti as an optimization that inte-
grates with existing synthesis-based vectorizing compilers for FHE.
We evaluate Biscotti on an existing FHE-aware compiler, Coyote.
Coyote and other synthesis-based FHE compilers do not scale well
with large programs, because they generate large graph spaces of
potential schedules to search through, a process that adds signifi-
cant computational overhead and often does not generate highly
efficient schedules. To overcome these limitations, we propose a
method for decomposing large programs into smaller, moremanage-
able subprograms, synthesizing schedules for each subprogram, and
then consolidating them into a unified vector schedule for the entire
program. Our strategy utilizes loop transformation via tiling, which
yields substantial improvements in compilation time and runtimes
over Coyote. Finally, we also discuss two additional approaches
(recursion and function composition) for program decomposition
that can be extended to Biscotti.
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